Fiberopticvideos.com
Welcome
Login / Register

Most Popular Articles


  • Polarization-Maintaining Fiber Tutorial

    Introduction to Polarization

    As light passes through a point in space, the direction and amplitude of the vibrating electric field traces out a path in time. A polarized lightwave signal is represented by electric and magnetic field vectors that lie at right angles to one another in a transverse plane (a plane perpendicular to the direction of travel). Polarization is defined in terms of the pattern traced out in the transverse plane by the electric field vector as a function of time.

    Polarization can be classified as linear, elliptical or circular, in them the linear polarization is the simplest. Whichever polarization can be a problem in the fiber optic transmission.

    FiberStore Polarization Coordinate System

    More and more telecommunication and fiber optic measuring systems refer to devices that analyse the interference of two optical waves. The information given by the interferences cannot be used unless the combined amplitude is stable in time, which means, that the waves are in the same state of polarization. In those cases it is necessary to use fibers that transmit a stable state of polarization. And polarization-maintaining fiber was developed to this problem. (The polarization-maintaining fiber will be called PM fiber for short in the following contents.)

     

    What Is PM Fiber?

    The polarization of light propagating in the fiber gradually changes in an uncontrolled (and wavelength-dependent) way, which also depends on any bending of the fiber and on its temperature. Specialised fibers are required to achieve optical performances, which are affected by the polarization of the light travelling through the fiber. Many systems such as fiber interferometers and sensors, fiber laser and electro-optic modulators, also suffer from Polarization-Dependent Loss (PDL) that can affect system performance. This problem can be fixed by using a specialty fiber so called PM Fiber.

     

    Principle of PM Fiber

    Provided that the polarization of light launched into the fiber is aligned with one of the birefringent axes, this polarization state will be preserved even if the fiber is bent. The physical principle behind this can be understood in terms of coherent mode coupling. The propagation constants of the two polarization modes are different due to the strong birefringence, so that the relative phase of such copropagating modes rapidly drifts away. Therefore, any disturbance along the fiber can effectively couple both modes only if it has a significant spatial Fourier component with a wavenumber which matches the difference of the propagation constants of the two polarization modes. If this difference is large enough, the usual disturbances in the fiber are too slowly varying to do effective mode coupling. Therefore, the principle of PM fiber is to make the difference large enough.

    In the most common optical fiber telecommunications applications, PM fiber is used to guide light in a linearly polarised state from one place to another. To achieve this result, several conditions must be met. Input light must be highly polarised to avoid launching both slow and fast axis modes, a condition in which the output polarization state is unpredictable.

    The electric field of the input light must be accurately aligned with a principal axis (the slow axis by industry convention) of the fiber for the same reason. If the PM fiber path cable consists of segments of fiber joined by fiber optic connectors or splices, rotational alignment of the mating fibers is critical. In addition, connectors must have been installed on the PM fibers in such a way that internal stresses do not cause the electric field to be projected onto the unintended axis of the fiber.

     

    Types of PM Fibers

    Circular PM Fibers

    It is possible to introduce circular-birefringence in a fiber so that the two orthogonally polarized modes of the fiber—the so called Circular PM fiber—are clockwise and counter-clockwise circularly polarized. The most common way to achieve circular-birefringence in a round (axially symmetrical) fiber is to twist it to produce a difference between the propagation constants of the clockwise and counterclockwise circularly polarized fundamental modes. Thus, these two circular polarization modes are decoupled. Also, it is possible to conceive externally applied stress whose direction varies azimuthally along the fiber length causing circular-birefringence in the fiber. If a fiber is twisted, a torsional stress is introduced and leads to optical-activity in proportion to the twist.

    Circular-birefringence can also be obtained by making the core of a fiber follows a helical path inside the cladding. This makes the propagating light, constrained to move along a helical path, experience an optical rotation. The birefringence achieved is only due to geometrical effects. Such fibers can operate as a single mode, and suffer high losses at high order modes.

    Circular PM fiber with Helical-core finds applications in sensing electric current through Faraday effect. The fibers have been fabricated from composite rod and tube preforms, where the helix is formed by spinning the preform during the fiber drawing process.

     

    Linear PM Fibers

    There are manily two types of linear PM fibers which are single-polarization type and birefringent fiber type. The single-polarization type is characterized by a large transmission loss difference between the two polarizations of the fundamental mode. And the birefringent fiber type is such that the propagation constants between the two polarizations of the fundamental mode are significantly different. Linear polarization may be maintained using various fiber designs which are reviewed next.

    Linear PM Fibers With Side Pits and Side Tunnels

    Side-pit fibers incorporate two pits of refractive index less than the cladding index, on each side of the central core. This type of fiber has a W-type index profile along the x-axis and a step-index profile along the y-axis. A side-tunnel fiber is a special case of side-pit structure. In these linear PM fibers, a geometrical anisotropy is introduced in the core to obtain a birefringent fibers.

     

    Linear PM Fibers With Stress Applied Parts

    An effective method of introducing high birefringence in optical fibers is through introducing an asymmetric stress with two-fold geometrical symmetry in the core of the fiber. The stress changes the refractive index of the core due to photoelastic effect, seen by the modes polarized along the principal axes of the fiber, and results in birefringence. The required stress is obtained by introducing two identical and isolated Stress Applied Parts (SAPs), positioned in the cladding region on opposite sides of the core. Therefore, no spurious mode is propagated through the SAPs, as long as the refractive index of the SAPs is less than or equal to that of the cladding.

    The most common shapes used for the SAPs are: bow-tie shape and circular shape. These fibers are respectively referred to as Bow-tie Fiber and PANDA Fiber. The cross sections of these two types of fibers are shown in the figure below. The modal birefringence introduced by these fibers represents both geometrical and stress-induced birefringences. In the case of a circular-core fiber, the geometrical birefringence is negligibly small. It has been shown that placing the SAPs close to the core improves the birefringence of these fibers, but they must be placed sufficiently close to the core so that the fiber loss is not increased especially that SAPs are doped with materials other than silica. The PANDA fiber has been improved further to achieve high modal birefringence, very low-loss and low cross-talk.

    PANDA Fiber and Bow-tie Fiber

    PANDA Fiber (left) and Bow-tie Fiber (right). The built-in stress elements made from a different type of glass are shown with a darker gray tone.

    Tips: At present the most popular PM fiber in the industry is the circular PANDA fiber. One advantage of PANDA fiber over most other PM fibers is that the fiber core size and numerical aperture is compatible with regular single mode fiber. This ensures minimum losses in devices using both types of fibers.

     

    Linear PM Fibers With Elliptical Structures

    The first proposal on practical low-loss single-polarization fiber was experimentally studied for three fiber structures: elliptical core, elliptical clad, and elliptical jacket fibers. Early research on elliptical-core fibers dealt with the computation of the polarization birefringence. In the first stage, propagation characteristics of rectangular dielectric waveguides were used to estimate birefringence of elliptical-core fibers. In the first experiment with PM fiber, a fiber having a dumbbell-shaped core was fabricated. The beat length can be reduced by increasing the core-cladding refractive index difference. However, the index difference cannot be increased too much due to practical limitations. Increasing the index difference increases the transmission loss, and splicing would become difficult because the core radius must be reduced. Typical values of birefringence for the elliptical core fiber are higher than elliptical clad fiber. However, losses were higher in the elliptical core than losses in the elliptical clad fibers.

     

    Linear PM Fibers With Refractive Index Modulation

    One way to increase the bandwidth of single-polarization fiber, which separates the cutoff wavelength of the two orthogonal fundamental modes, is by selecting a refractive-index profile which allows only one polarization state to be in cutoff. High birefringence was achieved by introducing an azimuthal modulation of the refractive index of the inner cladding in a three-layer elliptical fiber. A perturbation approach was employed to analyze the three-layer elliptical fiber, assuming a rectangular-core waveguide as the reference structure. Examination of birefringence in three-layer elliptical fibers demonstrated that a proper azimuthal modulation of the inner cladding index can increase the birefringence and extend the wavelength range for single-polarization operation.

    A refractive index profile is called Butterfly profile. It is an asymmetric W profile, consisting of a uniform core, surrounded by a cladding in which the profile has a maximum value of ncl and varies both radially and azimuthally, with maximum depression along the x-axis. This profile has two attributes to realize a single-mode single-polarization operation. First, the profile is not symmetric, which makes the propagation constants of the two orthogonal fundamental modes dissimilar, and secondly, the depression within the cladding ensures that each mode has a cutoff wavelength. The butterfly fiber is weakly guiding, thus modal fields and propagation constants can be determined from solutions of the scalar wave equation. The solutions involve trigonometric and Mathieu functions describing the transverse coordinates dependence in the core and cladding of the fiber. These functions are not orthogonal to one another which requires an infinite set of each to describe the modal fields in the different regions and satisfy the boundary conditions. The geometrical birefringence plots generated vs. the normalized frequency V showed that increasing the asymmetry through the depth of the refractive index depression along the x-axis increases the maximum value of the birefringence and the value of V at which this occurs. The peak value of birefringence is a characteristic of noncircular fibers. The modal birefringence can be increased by introducing anisotropy in the fiber which can be described by attributing different refractive-index profiles to the two polarizations of a mode. The geometric birefringence is smaller than the anisptropic birefringence. However, the depression in the cladding of the butterfly profile gives the two polarizations of fundamental mode cutoff wavelengths, which are separated by a wavelength window in which single-polarization single-mode operation is possible.

     

    Applications of PM Fibers

    PM fibers are applied in devices where the polarization state cannot be allowed to drift, e.g. as a result of temperature changes. Examples are fiber interferometers and certain fiber lasers. A disadvantage of using such fibers is that usually an exact alignment of the polarization direction is required, which makes production more cumbersome. Also, propagation losses are higher than for standard fiber, and not all kinds of fibers are easily obtained in polarization-preserving form.

    PM fibers are used in special applications, such as in fiber optic sensing, interferometry and quantum key distribution. They are also commonly used in telecommunications for the connection between a source laser and a modulator, since the modulator requires polarized light as input. They are rarely used for long-distance transmission, because PM fiber is expensive and has higher attenuation than single mode fiber.

     

    Requirments for Using PM Fibers

    Termination: When PM fibers are terminated with fiber connectors, it is very important that the stress rods line up with the connector, usually in line with the connector key.

    Splicing: PM fiber also requires a great deal of care when it is spliced. Not only the X, Y and Z alignment have to be perfect when the fiber is melted together, the rotational alignment must also be perfect, so that the stress rods align exactly.

    Another requirement is that the launch conditions at the optical fiber end face must be consistent with the direction of the transverse major axis of the fiber cross section.

    Read more »
  • Ethernet Passive Optical Network Tutorial

    EPON is a PON-based network that carries data traffic encapsulated in Ethernet frames. Unlike other PON technologies which are based on the ATM standard, it uses a standard 8b/10b line coding and operates at standard Ethernet speed. This lets you utilize the economies-of-scale of Ethernet, and provides simple, easy-to-manage connectivity to Ethernet-based, IP equipment, both at the customer premises and at the central office.

    EPON Network Structure

    A typical EPON system is composed of OLT, ONU, and ODN (Figure 1).

    EPON Network Structure
    Figure 1. EPON Network Structure

    The OLT(Optical Line Terminal)resides in the Central Office (CO) and connects the optical network to the metropolitan-area network or wide-area network, also known as the backbone or long-haul network. OLT is both a switch or router and a multi-service platform which provides EPON-oriented optical interfaces. Besides the network assembling and access functions, OLT could also perform bandwidth assignments, network security and management configurations according to the customers’ different QoS/SLA requirements.

    The ONU(Optical Network Unit)is located either at the end-user location or at the curb and provides optical interfaces which are connected to the OLT and service interfaces at users’ side such as voice, data and video.

    The ODN(Optical Distributed Network)is an optical distribution network and is mainly composed of one or more passive optical splitters which connects the OLT and ONU. Its function is to split downstream signal from one fiber into several fibers and combine optical upstream signals from multiple fibers into one. Optical splitter is a simple device which needs no power and could work in an all-weather environment. The typical splitters have a splitting ratio of 2, 4, 8, 16 or 32 and be connected to each other. The longest distance the ODN could cover is 20 km.

    EPON Downlink and Uplink Technology

    In an EPON the process of transmitting data downstream from the OLT to multiple ONUs is fundamentally different from transmitting data upstream from multiple ONUs to the OLT.

    In the downstream direction, Ethernet frames transmitted by the OLT pass through a 1:N passive splitter and reach each ONU. N is typically between 4 and 64. This behavior is similar to a shared-medium network. Because Ethernet is broadcast by nature, in the downstream direction (from network to user), it fits perfectly with the Ethernet PON architecture: packets are broadcast by the OLT and extracted by their destination ONU based on the media-access control (MAC) address (Figure 2).

    Downstream Traffic in EPON
    Figure 2. Downstream Traffic in EPON

    In the upstream direction, due to the directional properties of a passive optical combiner, data frames from any ONU will only reach the OLT, and not other ONUs. In that sense, in the upstream direction, the behavior of EPON is similar to that of a point-to-point architecture. However, unlike in a true point-to-point network, in EPON data frames from different ONUs transmitted simultaneously still may collide. Thus, in the upstream direction (from users to 13 network) the ONUs need to employ some arbitration mechanism to avoid data collisions and fairly share the fiber-channel capacity (Figure 3).

    Upstream Traffic in EPON
    Figure 3. Upstream Traffic in EPON

    EPON and ADSL Comparison

    The requirement of bandwidth is increasing crazily with the incoming of digital age. Therefore the current high speed copper cable ADSL (Asymmetric Digital Subscriber Line) cannot meet our needs longer. The bandwidth of ADSL is limited to only a few megabit per second and the upstream and downstream bandwidth are not equal either. However, optical fiber has larger bandwidth and superior transmission capability which reaches gigabit per second. Hence, optical fiber used in access network is the future trend. And since Ethernet is low cost, uncomplicated widely-used in current network, and its application is very popular nowadays. So it is not hard to see that it is feasible and economical to combine them together. EPON technology combines a mature Ethernet technology and high-bandwidth PON technology, which is an ideal access method to achieve integrated services. In the future, highbandwidth business will surely drive up existing EPON which has the rate of 1.25Gbps in both the downstream and upstream directions.

    EPON Technical Advantages

    EPONs are simpler, more efficient, and less expensive than alternate multiservice access solutions. Key advantages of EPONs include the following:

    Higher bandwidth: up to 1.25 Gbps symmetric Ethernet bandwidthLower costs: lower up-front capital equipment and ongoing operational costsMore revenue: broad range of flexible service offerings means higher revenues

     

    With the growing of EPON technology, interaction standards and EPON devices, EPON has entered the large scale application phase driven by the huge market demands. EPON is fit for the access market which is at the end of the fibers and which has a certain density and these markets include FTTH, FTTP, FTTB, FTTN etc.

    EPON becomes a very economical and effective broadband access solution because of its predominance in equipment investment and also the operations, maintenance and etc. It could be said that the EPON technology has become the developing direction of access network’s technologies in the future as an ideal solution for FTTH.

    Read more »
  • Mode Conditioning Patch Cable Tutorial

    There are bandwidth limitations of multimode fiber. Most current LAN networks are composed of about 90% multimode fiber. As the fiber cable plant is upgraded to single mode fiber cables, we must also provide a migration path that continues to reuse the installed multimode cable plant for as long as possible. However, there are some technical issues involved when using single mode equipment on existing multimode cable plant. The biggest problem is caused by Differential Mode Delay (DMD). It refers when a fast rise-time laser pulse is applied to multimode fiber, significant pulse broadening occurs due to the difference in propagation times of different modes within the fiber.

    To solve the problem, mode conditioning patch cable was developed as a solution for network applications where Gigabit Ethernet hubs with laser based transmitters are deployed. Mode conditioning patch cable is the mean to achieve the drive distance of installed fiber plant beyond its original intended applications. It allows customer upgrading their hardware technology without the cost of upgrading fiber plant. In addition, mode conditioning patch cable significantly improves data signal quality while increasing the transmission distance.

     

    What is Mode Conditioning Patch Cable?

    MCP

     

    Mode Conditioning Patch Cable, or Mode Conditioning Patchcord (MCP), is a duplex multimode patch cable that has a small length of single mode fiber at the start of the transmission length. Designed to "condition" the laser launch and obtain an effective bandwidth closer to that measured by the overfilled launch method, the MCP allows for laser transmitters to operate at gigabit rates over multimode fiber without being limited by DMD. The point is to excite a large number of modes in the fiber, weighted in the mode groups that are highly excited by overfill launch conditions, and to avoid exciting widely separated mode groups with similar power levels. This is achieved by launching the laser light into a single mode fiber, then coupling it into a multimode fiber that is off-center relative to the single mode fiber core. This is shown beside.

    Tips: Different offsets are required for 50µm and 62.5µm multimode fibers. Engineers have found that an offset of 17~23 µm can achieve an effective modal bandwidth equivalent to the overfill launch method for 62.5µm multimode fibers. And an offset of 10~16 µm is good for 50µm multimode fibers.

    The basic principle behind the cable is to launch laser into the small section of single mode fiber. The other end of single mode fiber is coupled to the multimode section of the cable with the offset from the center of the multimode fiber. This patch cable is required with transceivers (e.g.1000BASE-LX/LH, 10GBASE-LX4 and 10GBASE-LRM) that use both single mode and multimode fibers. When launching into multimode fiber, the transceiver can generate multiple signals that causes DMD which can severly limit transmission distances. The MCP removes these multiple signals, eliminating problems at the receiver end. Here is a figure that shows an MCP and how it is typically connected to a transceiver module. When required, it is inserted between a transceiver module and the multimode cable plant.

    MCP using with Transceivers

     

    Requirements for Using MCPs in Laser-Based Transmissions

    Gigabit Ethernet

    The requirement for MCP is specified only for 1000BASE-LX/LH transceivers transmitting in the 1300nm window and in applications over multimode fiber. MCP should never be used in 1000BASE-SX links in the 850nm window. MCP is required for 1000BASE-LX/LH applications over FDDI-grade, OM1, and OM2 fiber types. MCP should never be used for applications over OM3, also known as "laser-optimized fiber".

    Note:
     
    1. In some cases, customers might experience that a link would be operating properly over FDDI-grade, OM1 or OM2 fiber types without MCP. However please note there is no guarantee link will be operating properly over time, and the recommendation remains to use the MCP.
     
    2. There is a risk associated to this type of nonstandard deployment without MCP, especially when the jumper cable is an FDDI-grade or OM1 type. In such case the power coupled directly into a 62.5µm fiber could be as high as a few dBm and the adjacent receiver will be saturated. This can cause high bit error rate, link flaps, link down status and eventually irreversible damaged to the device.
     
    3. In the event customers remain reluctant to deploy MCP cables, and for customers using OM3 cables, please measure the power level before plugging the fiber into the adjacent receiver. When the received power is measured above -3dBm, a 5dB attenuator for 1300nm should be used and plugged at the transmitter source of the optical module on each side of the link.
     
    4. Another alternative for short reaches within the same location is to use a single-mode patch cable. There will be no saturation over single-mode fiber.

     

    10-Gigabit Ethernet

    The requirement for MCP is specified only for 10GBASE-LX4 and 10GBASE-LRM transceivers transmitting in the 1300nm window and in applications over multimode fiber. MCP should never be used in 10GBASE-SR links in the 850nm window. MCP is required for 10GBASE-LX4 and 10GBASE-LRM applications over FDDI-grade, OM1, and OM2 fiber types. MCP should never be used for applications over OM3, also known as "laser-optimized fiber."

    Notes for 10GBASE-LX4:
     
    1. In some cases, customers might experience that a link would be operating properly over OM2 fiber type without MCP. However chances of experiencing a properly operating link over FDDI-grade or OM1 fiber types without MCP are very low.
     
    2. In the event customers remain reluctant to deploy MCP cables over OM2, and for customers using OM3 cables, it is required to a plug a 5dB attenuator for 1300nm at the transmitter source of the optical module on each side of the link in order to avoid saturation, and potential subsequent link flaps and damage to the device.
     
    3. Another alternative for short reaches within the same location is to use a single-mode patch cable. There will be no saturation over single-mode fiber. Please note the 10GBASE-LX4 devices can reach up to 10 km over single-mode fiber as per compliance to IEEE.
     
    Notes for 10GBASE-LRM:
     
    1. For customers using OM3 fiber type, MCP should not be used. It is highly recommended to measure the power level before plugging the fiber into the adjacent receiver. When the received power is measured to be above 0.5dBm, a 5dB attenuator for 1300nm should be used and plugged at the transmitter source of the optical module on each side of the link.
     
    2. Another alternative for short reaches within the same location is to use a single-mode patch cable. There will be no saturation over single-mode fiber. Please note the 10GBASE-LRM devices can reach up to 300 meters over single-mode fiber.

     

    Notes for the Installation of MCPs

    When using 1000BASE-LX/LH, 10GBASE-LX4 and 10GBASE-LRM transceivers with legacy 62.5µm or 50µm multimode fiber, you must install MCP between the transceiver and the multimode fiber cable on both ends of the link. The MCP is required for all links over FDDI-grade, OM1 and OM2 fiber types, and should never be used for applications over OM3 and more recent fiber types.

    Note: It is not recommended using 1000BASE-LX/LH, 10GBASE-LX4 and 10GBASE-LRM transceivers with multimode fiber and no patch cable for very short link distances (tens of meters). The result could be an elevated Bit Error Rate (BER) and receiver damage.

    The MCP is installed between the transceiver and the patch panel. Two MCPs are required per installation. To install the patch cable, follow these steps:
     
    Step 1 - Plug the single mode fiber connector into the transmit bore of the transceiver.
    Step 2 - Plug the other half of the duplex connector into the receive bore of the transceiver.
    Step 3 - At the other end of the patch cable, plug both multimode connectors into the patch panel.
    Step 4 - Repeat Step 1 through Step 3 for the second transceiver located at the other end of the network link.
    Read more »
  • WDM Optical Networking Solutions

    COMPUFOX offers a number of  WDM Optical Networking solutions which allow transport associated with a mix of services up to 100 GbE over dark fiber and WDM networks providing for the whole set of probably the most demanding CWDM and DWDM network infrastructure needs. Because the physical fiber optic cabling is expensive to implement for every single service separately, its capacity expansion using a WDM is a necessity.

    WDM Architectures

    WDM architecture

     

    WDM (Wavelength Division Multiplexing) is a concept that describes combination of several streams of data/storage/video or voice on the same physical fiber optic cable by utilizing several wavelengths (or frequencies) of light with each frequency carrying a different sort of data. There's two types of WDM architectures: CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing). CWDM systems typically provide 18 wavelengths, separated by 20 nm, from 1470nm to 1610nm according to ITU-T standard G.694.2. However, for different applications, there are different ITU-T standard to define the specific wave range and channels. Compared to CWDM, DWDM is defined in terms of frequencies. Some DWDM network systems provide up to 96 wavelengths, typically without any more than 0.4 nm spacing, roughly over the C-band range of wavelengths.

    CWDM Technology

    CWDM is proved to be the initial access point for many organizations due to its lower cost. Each CWDM wavelength typically supports as much as 2.5 Gbps and could be expanded to 10 Gbps support. This transfer rates are sufficient to aid GbE, Fast Ethernet or 1/2/4/8/10G Fibre Channel, along with other protocols. The CWDM is limited to 16 wavelengths and is typically deployed at networks as much as 80 km since optical amplifiers can't be used due to the large spacing between channels.

    DWDM Technology

    DWDM is a technology allowing high throughput capacity over longer distances commonly ranging between 44-88 channels/wavelengths and transferring data rates up to 100 Gbps per wavelength. Each wavelength can transparently have a wide range of services. The channel spacing from the DWDM solutions is defined by the ITU standards and can range from 50 GHz and 100 GHz (the most widely used today) to 200 GHz. DWDM systems can provide up to 96 wavelengths (at 50 GHz) of mixed service types, and can transport to distances up to 3000 km by deploying optical amplifiers (e.g., DWDM EDFA) and dispersion compensators thus enhancing the fiber capacity with a factor of x100. Due to its more precise and stabilized lasers, the DWDM technology tends to be more expensive in the sub-10G rates, but is really a more appropriate solution and it is dominating for 10G service rates and above providing large capacity data transport and connectivity over long distances at affordable costs.

    Note: COMPUFOX WDM optical networking goods are designed to support both CWDM and DWDM technology by utilizing standards based pluggable  CWDM/DWDM Transceivers such as SFP, XFP and SFP. The technology used is carefully calculated per project and according to customer requirements of distance, capacity, attenuation and future needs.

    DWDM OVER CWDM NETWORK

    The main benefit of CWDM is the price of the optics that is typically 1 / 3 of the price of the equivalent DWDM optics. This difference in economic scale, the limited budget that lots of customers face, and typical initial requirements to not exceed 8 wavelengths, means that CWDM is a popular entry point for a lot of customers. With COMPUFOX WDM equipment, a customer can start with 8 CWDM wavelengths however grow by introducing DWDM wavelengths in to the mix, utilizing the existing fiber and maximizing roi. By utilizing CWDM and DWDM network systems or the mixture of thereof, carriers and enterprises are able to transport services as much as 100 Gbps of data.

    Typically CWDM solutions provide 8 wavelengths capability enabling the transport of 8 client interfaces over the same fiber. However, the relatively large separation between your CWDM wavelengths allows growth of the CWDM network with an additional 44 wavelengths with 100 GHz spacing utilizing DWDM technology, thus expanding the present infrastructure capability and making use of the same equipment included in the integrated solution.

    Fiberstore

    Additionally, the normal CWDM spectrum supports data transport rates as high as 4.25 Gbps, while DWDM is utilized more for large capacity data transport needs as high as 100 Gbps. By mapping DWDM channels inside the CWDM wavelength spectrum as demonstrated below, higher data transport capacity on the same fiber optic cable is possible without any requirement for changing the existing fiber infrastructure between the network sites. As demonstrated through the figure beside, CWDM occupies the following ITU channels: 1470 nm, 1490 nm, 1510 nm, 1530 nm, 1550 nm, 1570 nm, 1590 nm, and 1610 nm, each separated from the other by 20 nm. COMPUFOX can insert into the of the 4 CWDM wavelengths (1530 nm,1550 nm,1570 nm and 1590 nm), a set of additional 8 wavelength of DWDM separated from one another by only 0.1 nm. By doing so up to 4 times, the CWDM network capability can easily expand by up to 28 additional wavelengths.

    The other figure below further demonstrates in detail the expansion capabilities via the DWDM spectrum. As seen below, just one outgoing and incoming wavelength of the existing CWDM infrastructure can be used for 8 DWDM channels multiplexing in to the original wavelength. Since this DWDM over CWDM network solution is integrating the DWDM transponders, DWDM MUX/DeMUX and EDFA (optical amplifier if needed), the entire solution is delivered simply by adding a really compact 1U unit. This expansion is achieved with no service interruption to the remaining network services, or to the data, and with no need to change or replace any of the working CWDM infrastructures.

    Fiberstore

    Advantages of COMPUFOX WDM Optical Networking Solutions

    COMPUFOX CWDM and DWDM network equipment provides the following advantages:
     
    Low-cost initial setup with targeted future growth path.
    Easy conversion and upgrade capabilities up to 44 wavelengths
    Easy upgrade to support 10G, 40G and 100G services
    Seamless, non traffic effective network upgrades
    Reliable, secure, and standards based architecture
    Easy to install and maintain
    Full performance monitoring
     

    With COMPUFOX compact CWDM solutions, you could get all of the above benefits and much more (such as remote monitoring and setup, integrated amplifiers, protection capabilities, and integration with 3rd party networking devices, etc.) inside a cost effective 1U unit, enabling you to expand as you grow, and utilize your financial as well as physical resources towards the maximum.

    To purchase your CWDM and DWDM transceivers, please click on the links below:

     

    Read more »
  • T-Mobile becomes number one US smartphone channel

    Written by Scott Bicheno  Telecoms.com

    T-Mobile

    Disruptive US operator T-Mobile has become the leading sales channel for smartphones in the US, according to new research from Counterpoint.

    T-Mobile overtook Verizon to take the number one smartphone sales spot, having been a distant fourth just two years ago. This change is viewed as indicative of a broader change in the way smartphones are being purchased in the US, with the cost of devices increasingly uncoupled from the service contracts and, if needed, paid for via conventional financing arrangements.

    The US market has undergone significant shifts in the power of the different sales channels with the move to unsubsidized plans,” said Neil Shah of Counterpoint. “The growth of T-Mobile through its different ‘Uncarrier’ moves, the removal of subsidies and enticing subscribers with ‘Simple Choice’ & ‘Jump’ plans, has helped the operator to become the top smartphone sales channel in the USA.

    Samsung and Apple together captured almost two-thirds of the total smartphone shipments share at T-Mobile, with Samsung leading. However, it will be an uphill task for T-Mobile to maintain this lead ahead of Verizon and continue to attract millions of subscribers to its network. The move to unsubsidized and unlocked has also boosted demand in the open channel, which continued to contribute close to 10% of the total shipments in Q1 2016.”

    Conterpoint US smartphones slide 2

    US smartphone sales on the whole declined by 4% year-on-year due to the maturity of the market (most people already have a smartphone) and a lengthening on the upgrade cycle. The latter factor will be a direct result of the shift in buying habits as fewer consumers are being prompted to upgrade their subsidized phones by the renewal of their postpaid contracts.

    “The US market decelerated due to softness in Apple iPhone demand and iPhone SE demand not materializing until Q2 2016,” said Jeff Fieldhack of Counterpoint. “Carriers continued to push subscribers to non-subsidy plans as for the first time more than half of the combined subscriber base of the top four carriers are now on non-subsidized plans. This is a significant shift from the subsidy-driven model just ten to twelve quarters ago. This has changed the basis of competition in US mobile landscape.

    “The focus has shifted to creating more value for the consumer, instead of being device-driven. Unsubsidized device sales have educated consumers that flagship smartphones are costly. This has led to a temporary softness in the device upgrade cycle; the in-carrier upgrade run rate continues to be in 5-6% range per quarter. Handset manufacturers will continue to push hardware and marketing limits to entice subscribers to not defer upgrading.”

     

    Read more »
RSS