Fiberopticvideos.com
Welcome
Login / Register

Most Popular Articles


  • The Composition and Classification of Fiber Optic Cables

    To satisfy optical, mechanical and environmental performances and specifications, fiber optic cable was born. The fiber optic cable uses one or more fibers that placed in the sheath as the transmission medium. Accompanied by the continuous advancement of network technology, fiber optic cable constantly participates in the construction of telecommunications networks, the construction of the national information highway, Fiber To The Home (FTTH) and other occasions for large-scale use. Although fiber optic cable is still more expensive than other types of cable, it's favored for today's high-speed data communications because it eliminates the problems of twisted-pair cable and so fiber optic cable is still a good choice for people. But how to really get a good performance, state-of-the-art products, we need to understand some basics to identify the types of fiber optic cables.

    Composition

    Fiber optic cable consists of the core, the cladding and the coating. The core is a cylindrical rod of dielectric material. Dielectric material conducts no electricity. Light propagates mainly along the core of the fiber. The core is generally made of glass. The core is described as having a radius of (a) and an index of refraction n1. The core is surrounded by a layer of material called the cladding. Even though light will propagate along the fiber core without the layer of cladding material, the cladding does perform some necessary functions. (The basic structure of an optical fiber is shown in the following figure.)

     

    Structure: Core: This central section, made of silica, is the light transmitting region of the fiber.Cladding: It is the first layer around the core. It is also made of silica, but not with the same composition as the core. This creates an optical wave guide which confines the light in the core by total reflection at the core-cladding interface.Coating: It is the first non-optical layer around the cladding. The coating typically consists of one or more layers of a polymer that protect the silica structure against physical or environmental damage.Strengthening Fibers: These components help protect the core against crushing forces and excessive tension during installation. The materials can range from Kevlar to wire strands to gel-filled sleeves.Cable Jacket: This is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some may be black or yellow. The jacket material is application specific. The cable jacket material determines the mechanical robustness, aging due to UV radiation, oil resistance, etc.

     

    Jacket Material: PolyEthylene (PE): PE (black color) is the standard jacket material for outdoor fiber optic cables. PE has excellent moisture- and weather-resistance properties. It has very stable dielectric properties over a wide temperature range. It is also abrasion-resistant.PolyVinyl Chloride (PVC): PVC is the most common material for indoor cables, however it can also be used for outdoor cables. It is flexible and fire-retardant. PVC is more expensive than PE.PolyVinyl DiFluoride (PVDF): PVDF is used for plenum cables because it has better fire-retardant properties than PE and produces little smoke.Low Smoke Zero Halogen (LSZH) Plastics: LSZH plastics are used for a special kind of cable called LSZH cables. They produce little smoke and no toxic halogen compounds. But they are the most expensive jacket material. 

     

    Fiber Size

    The size of the optical fiber is commonly referred to by the outer diameter of its core, cladding and coating. Example: 50/125/250 indicates a fiber with a core of 50 microns, cladding of 125 microns, and a coating of 250 microns. The coating is always removed when joining or connecting fibers. A micron (µm) is equal to one-millionth of a meter. 25 microns are equal to 0.0025 cm. (A sheet of paper is approximately 25 microns thick).

     

    Classification

    Besides the basics, Fiber optic cables can be classified by other ways.

    Transmission Mode:
    • Multi-Mode Fiber (MMF) Cable: Center glass core is coarse (50 or 62.5 µm). It can transmit a variety of patterns of light. However, because its dispersion is large, which limits the frequency of the transmitted digital signal, and with increasing distance, the situation will be more serious. For example, 600Mb/km of 2km fibers provide the bandwidth of only 300 Mbps. Therefore, MMF cable's transmission distance is relatively short, generally only a few kilometers. General MMF patch cables are in orange, also some are gray, joints and protection are beige or black. 
    • Single-Mode Fiber SMF Cable: Center glass core is relatively fine (core diameter is generally 9 or 10 µm), only one mode of light transmission. Therefore, the dispersion is very small, suitable for remote communication, but it plays a major role in the chromatic dispersion, so that SMF cable has a higher stability requirement to the spectral width of the light source, just as narrower spectrum width, better stability. General SMF patch cables are in yellow, with joints and cases in blue.

     

    Transmission Way:
    • Simplex Cable: Single strand of fiber surrounded by a 900µm buffer then a layer of Kevlar and finally the outer jacket. Available in 2 mm or 3 mm and plenum or riser jacket. Plenum is stronger and made to share in fire versus riser is made to melt in fire. Riser cable is more flexible.
    • Duplex Cable: Two single strands of fiber optic cable attached at the center. Surrounded by a 900µm buffer then a layer of Kevlar and finally the outer jacket. In data communications, the simultaneous operation of a circuit in both directions is known as full duplex; if only one transmitter can send at a time, the system is called half duplex.

     

    Cable Core Structure:
    • Central Tube Cable: Fiber, optical fiber bundles or fiber optic cable with no stranding directly into the center position.
    • Stranded Tube Cable: A few dozens or more root fiber or fiber tape unit helically stranded around the central strength member (S twist or SZ twisted) into one or more layers of fiber optic cable.
    • Skeleton After Tube Cable: Fiber or fiber after spiral twisted placed into the plastic skeleton cable slot.

     

    Fiber Road Laying:
    • Aerial Cable: Aerial cables are for outside installation on poles. They can be lashed to a messenger or another cable (common in CATV) or have metal or aramid strength members to make them self supporting. The cable shown has a steel messenger for support. It must be grounded properly. A widely used aerial cable is optical power ground wire which is a high voltage distribution cable with fiber in the center. The fiber is not affected by the electrical fields and the utility installing it gets fibers for grid management and communications. This cable is usually installed on the top of high voltage towers but brought to ground level for splicing or termination. 
    • Direct-Buried Cables:
      • Armored Cable: Armored cable is used in direct-buried outside plant applications where a rugged cable is needed and/or rodent resistance. Armored cable withstands crush loads well, needed for direct burial applications. Cable installed by direct burial in areas where rodents are a problem usually have metal armoring between two jackets to prevent rodent penetration. Another application for armored cable is in data centers, where cables are installed underfloor and one worries about the fiber cable being crushed. Armored cable is conductive, so it must be grounded properly. 
      • Breakout Cable: Breakout cable is a favorite where rugged cables are desirable or direct termination without junction boxes, patch panels or other hardware is needed. It is made of several simplex cables bundled together inside a common jacket. It has a strong, rugged design, but is larger and more expensive than the distribution cables. It is suitable for conduit runs, riser and plenum applications. It's perfect for industrial applications where ruggedness is needed. Because each fiber is individually reinforced, this design allows for quick termination to connectors and does not require patch panels or boxes. Breakout cable can be more economic where fiber count is not too large and distances are not too long, because it requires so much less labor to terminate.
    • Submarine Cable: Submarine cable is the cable wrapped with insulating materials, laying at the bottom of the sea, to set up a telecom transmission between countries.

     

    Cable State. Based on 900µm tight buffered fiber and 250µm coated fiber there are two basic types of fiber optic cable constructions:
    • Tight Buffered Cable: Multiple color coded 900µm tight buffered fibers can be packed tightly together in a compact cable structure, an approach widely used indoors, these cables are called tight buffered cables. Tight buffered cables are used to connect outside plant cables to terminal equipment, and also for linking various devices in a premises network. Multi-fiber tight buffered cables often are used for intra-building, risers, general building and plenum applications. Tight buffered cables are mostly built for indoor applications, although some tight buffered cables have been built for outdoor applications too.
    • Loose Tube Cable: On the other hand multiple (up to 12) 250µm coated fibers (bare fibers) can be put inside a color coded, flexible plastic tube, which usually is filled with a gel compound that prevents moisture from seeping through the hollow tube. Buffer tubes are stranded around a dielectric or steel central member. Aramid yarn are used as primary strength member. Then an outer polyethylene jacket is extruded over the core. These cables are called loose tube cables. Loose tube structure isolates the fibers from the cable structure. This is a big advantage in handling thermal and other stresses encountered outdoors, which is why most loose tube fiber optic cables are built for outdoor applications. Loose-tube cables typically are used for outside-plant installation in aerial, duct and direct-buried applications. 

     

    Environment & Situation:
    • Indoor Cable: Such as distribution cables. Distribution cable is the most popular indoor cable, as it is small in size and light in weight. They contain several tight-buffered fibers bundled under the same jacket with Kevlar strength members and sometimes fiberglass rod reinforcement to stiffen the cable and prevent kinking. These cables are small in size, and used for short, dry conduit runs, riser and plenum applications. The fibers are double buffered and can be directly terminated, but because their fibers are not individually reinforced, these cables need to be broken out with a "breakout box" or terminated inside a patch panel or junction box to protect individual fibers.
    • Outdoor Cable: Outdoor fiber cable delivers outstanding audio, video, telephony and data signal performance for educational, corporate and government campus applications. With a low bending radius and lightweight feature, this cable is suitable for both indoor and outdoor installations. These are available in a variety of configurations and jacket types to cover riser and plenum requirements for indoor cables and the ability to be run in duct, direct buried, or aerial/lashed in the outside plant.

    To purchase your fiber cables, please click link below:

    Fiber Patch Cables

     

    Read more »
  • MPO/MTP Solutions for High Density Applications

    As the bandwidth demands grow rapidly, data centers have to achieve ultra-high density in cabling to accommodate all connections. MPO/MTP technology with multi-fiber connectors offers ideal conditions for high-performance data networks in data centers. This article will introduce information about MPO/MTP solutions, such as MPO/MTP trunk cable, MPO/MTP harness cable and MPO/MTP cassettes.

    MTP/MPO Trunk Cable

    MTP/MPO trunk cables are terminated with the MTP/MPO connectors (as shown in the following figure). Trunk cables are available with 12, 24, 48 and 72 fibers. MTP/MPO trunk cables are designed for data center applications. The plug and play solutions uses micro core cable to maximize bend radius and minimize cable weight and size. Besides, MTP/MPO trunk cables also have the following advantages:

    • Saving installation time–With the special plug and play design, MTP/MPO trunk cables can be incorporated and immediately plugged in. It greatly helps reduce the installation time.
    • Decreasing cable volume–MTP/MPO trunk cables have very small diameters, which decrease the cable volume and improve the air-conditioning conditions in data centers.
    • High quality–MTP/MPO trunk cables are factory pre-terminated, tested and packed along with the test reports. These reports serve as long-term documentation and quality control.

    Trunk-Cable

    MPO/MTP Harness Cable

    MPO/MTP harness cable (as shown in the following figure) is also called MPO/MTP breakout cable or MPO/MTP fan-out cable. This cable has a single MTP connector on one end that breaks out into 6 or 12 connectors (LC, SC, ST, etc.). It’s available in 4, 6, 8, or 12 fiber ribbon configurations with lengths about 10, 20, 30 meters and other customized lengths. MPO/MTP harness cable is designed for high density applications with required high performance. It’s good to optimize network performance. Other benefits are shown as below:

    • Saving space–The active equipment and backbone cable is good for saving space.
    • Easy deployment–Factory terminated system saves installation and network reconfiguration time.
    • Reliability–High standard components are used in the manufacturing process to guarantee the product quality.

    Harness-Cable

    MPO/MTP Cassette

    MPO/MTP cassette modules provide secure transition between MPO/MTP and LC or SC discrete connectors. They are used to interconnect MPO/MTP backbones with LC or SC patching. MPO/MTP Cassettes are designed to reduce installation time and cost for an optical network infrastructure in the premises environment. The modular system allows for rapid deployment of high density data center infrastructure

    Cassette

    as well as improved troubleshooting and reconfiguration during moves, addons, and changes. Aside from that, it has other advantages:

    • MPO/MTP interface–MPO/MTP components feature superior optical and mechanical properties.
    • Optimized performance–Low insertion losses and power penalties in tight power budget, high-speed network environments.
    • High density–12 or 24 fiber cassettes can be mounted in 1U scaling up to 72 or in 3U scaling up to 336 discrete LC connectors.

    The above shows that the MPO/MTP system is a good solution for data center requirements. This high density, scalable system is designed to enable thousands of connections.

    Read more »
  • Polarity and MPO Technology in 40/100GbE Transmission

    It have been proved that reducing cable diameters and increasing connection densities offered by fiber links would be extremely valuable during installation in constrained space, like data center, large enterprise equipment rooms, central office, etc. With the market turning to 40/100G transmission, to reduce congestion during cabling and make it easier to organize equipment cable runs, the network designers turns to MPO/MTP technology and components for today's duplex fiber transmission. Then, network designers face another challenge which is how to assure the proper polarity of these array connections using MPO/MTP components from end-to-end.

    Traditionally, a fiber optic link requires two fibers for full duplex communications. It is very important to ensure that the equipment on the link are connected properly at each end. However, when the link contains two or more fibers, maintain the correct polarity across a fiber network become more complex, especially when using multi-fiber MPO components for high data rate transmission. Luckily, pre-terminated MPO components adopt humanized design for polarity maintenance and the TIA 568 standard provides three methods for configuring systems to ensure that proper connections are made. This article will introduce polarity in MPO system and 40/100GbE polarization connectivity solutions in details.

    Polarity in MPO Components

    To maintain the correct polarity in MPO systems, the property of the components of MPO systems should be understood firstly. This part will introduce the basic components that are used in MPO system.

    MPO Connector: To understand the polarity in 40/100 GbE transmission, the key of MPO technology—MPO connector should be first introduced. MPO connector usually has 12 fibers. 24 fibers, 36 fibers and 72 fibers are also available. Each MTP connector has a key on one of the flat side added by the body. When the key sits on the bottom, this is called key down. When the key sits on the top, this is referred to as the key up position. In this orientation, each of the fiber holes in the connector is numbered in sequence from left to right and is referred as fiber position, or P1, P2, etc. A white dot is additionally marked on one side of the connector to denote where the position 1 is. (shown in the following picture) The orientation of this key also determines the MTP cable's polarity.

    MPO connector

     

    MPO Adapter: MPO (male) connectors are mated to MPO(female) connectors using a MPO adapter. As each MPO connector has a key, there are 2 types of MPO adapters:

    Type A—key-up to key-down. Here the key is up on one side and down on the other. The two connectors are connected turned 180° in relation to each other.Type B—key-up to key-up. Here both keys are up. The two connectors are connected while in the same position in relation to each other.

     

    MPO adapter

     

    MPO Cables: MPO trunk cable with two MPO connectors (male/female) on both side of the cable serves as a permanent link connecting the MPO modules to each other, which is available with 12, 24, 48, 72 fibers.

    MPO harness cable, which is terminated with a male/female connector on the MPO side and several duplex LC/SC connectors on the other side, provides a transition from multi-fiber cables to individual fibers or duplex connectors.

    MPO Cassette: Modular MPO cassette is enclosed unit that usually contains 12 or 24-fiber factory terminated fan-outs inside. It enables the user to take the fibers brought by a trunk cable and distribute them to a duplex cable with a MPO connector (at the rear) to the more common LC or SC interface (on the front side). The following is a MTP cassette with 6 duplex LC interface and a MTP connector.

    MTP cassette

    Three Cables for Three Polarization Methods

    The three methods for proper polarity defined by TIA 568 standard are named as Method A, Method B and Method C. To match these standards, three type of MPO truck cables with different structures named Type A, Type B and Type C are being used for the three different connectivity methods respectively. In this part, the three different cables will be introduced firstly and then the three connectivity methods.

    MPO Trunk Cable Type A: Type A cable also known as straight cable, is a straight through cable with a key up MPO connector on one end and a key down MPO connector on the opposite end. This makes the fibers at each end of the cable have the same fiber position. For example, the fiber located at position 1 (P1) of the connector on one side will arrive at P1 at the other connector. The fiber sequence of a 12 fiber MPO Type A cable is showed as the following:

    Type A cable

    MPO Trunk Cable Type B: Type B cable (reversed cable) uses key up connector on both ends of the cable. This type of array mating results in an inversion, which means the fiber positions are reversed at each end. The fiber at P1 at one end is mated with fiber at P12 at the opposing end. The following picture shows the fiber sequences of a 12 fiber Type B cable.

    Type B cable

    MPO Trunk Cable Type C: Type C cable (pairs flipped cable) looks like Type A cable with one key up connector and one key down connector on each side. However, in Type C each adjacent pair of fibers at one end are flipped at the other end. For example, the fiber at position 1 on one end is shifted to position 2 at the other end of the cable. The fiber at position 2 at one end is shifted to position 1 at the opposite end etc. The fiber sequence of Type C cable is demonstrated in the following picture.

    Type C cable

    Three Connectivity Methods

    Different polarity methods use different types of MTP trunk cables. However, all the methods should use duplex patch cable to achieve the fiber circuit. The TIA standard also defines two types of duplex fiber patch cables terminated with LC or SC connectors to complete an end-to-end fiber duplex connection: A-to-A type patch cable—a cross version and A-to-B type patch cable—a straight-through version.

    duplex patch cable

    The following part illustrates how the components in MPO system are used together to maintain the proper polarization connectivity, which are defined by TIA standards.

    Method A: the connectivity Method A is shown in the following picture. A type-A trunk cable connects a MPO module on each side of the link. In Method A, two types of patch cords are used to correct the polarity. The patch cable on the left is standard duplex A-to-B type, while on the right a duplex A-to-A type patch cable is employed.

    Method A

    Method B: in Connectivity Method B, a Type B truck cable is used to connect the two modules on each side of the link. As mentioned, the fiber positions of Type B cable are reversed at each end. Therefore standard A-to-B type duplex patch cables are used on both sided.

    Method B

    Method C: the pair-reversed trunk cable is used in Method C connectivity to connect the MPO modules one each side of the link. Patch cords at both ends are the standard duplex A-to-B type.

    Method C

    Upgrade to 40/100GbE With Correct Polarity

    The using of MPO/MTP connectors for 40/100G transmission is achieved with multimode fiber by transmitting multiple parallel 10G transmissions that will then be recombined when received. This method has been standardized. The following is to offer 40G transmission solution and 100G respectively.

    40G Transmission Connectivity

    The 40G transmission usually uses 12-fiber MPO/MTP connectors. There are eight lanes within twelve total positions being employed for transmitting and receiving signals. Looking at the end face of the MPO/MTP connector with the key on top, the four leftmost positions are used to transmit, the four rightmost positions are used to receive, the four in the center are unused. The following picture shows the optical lane assignments. (Tx stands for Transmit, Rx stands for Receive) This approach would transmit 40G using for parallel 10G lanes in each direction according to 40GBase-SR4.

    40G transmission

    100G Transmission Connectivity

    The 100G transmission over multimode requires a total of 20 fibers, 10 for transmitting and 10 for receiving. There are three options which is introduced as following:

    The first method is to use a 24-fiber MPO/MTP connector with the top center 10 positions allocated for receiving and the bottom 10 position allocated for transmitting,as shown in the following figure. This method is recommended by IEEE.

    100G transmission

    The second option is to use two 12-fiber MPO/MTP connectors side by side. The 10 positions in the center of the connector on the left are used for transmitting and the center 10 positions of the left are used for receiving.

    100G transmission

    The third way of 100G transmission also uses two 12-fiber MPO/MTP connectors, but it uses the stacked layout as showed in the following figure. The ten center positions of the top connector are used for receiving and the ten center position of the bottom are used for transmitting.

    100G transmission

    Understand Polarity in 40/100G

    Any transmit position should be connected to its own receive position. Here's an analogy to illustrate: Think of ball players. You have pitchers & catchers. For 10G transmission, Pitcher 1 needs to throw to Catcher 1, Pitcher 2 to Catcher 2 and so on. (showed on the left side of the following picture) For 40/100G, any pitcher can throw to any catcher.(showed on the right side of the following picture)

    10/40/100G polarity understanding

    But if you've got two catchers looking at each other as showed in the following picture, there isn't a whole lot happening.

    wrong polarity

    Conclusion

    Network designer using MPO/MTP components to satisfy the increasing requirement for higher transmission speed, during which one of the big problems—polarity, can be solved by selecting the right types of MPO cables, MPO connectors, MPO cassette and patch cables. Consider the polarity method to be used and selecting the correct MPO/MTP components to support that methods, the proper solution for 40/100G transmission would be achieved with high density and flexibility and reliability.

    Read more »
  • Qualcomm goes big on wifi and IoT with multiple chip launches

    By Tim Skinner        telecoms.com

    Qualcomm has announced new chips and technologies designed to boost domestic wifi coverage, at-home IoT connectivity, wearable tech capability and next generation broadband delivery.

    Starting off with domestic wifi coverage boosting, and Qualcomm launched a new family of 802.11ac platforms designed to optimise device wifi usage by intelligently allocating radio spectrum in the home. It says its new three radio solutions combine two 5 GHz radios and a 2.4 GHz radio to help improve connectivity; and its platform, used on new routers and repeaters, can appropriately dedicate radio in the legacy 2.4 GHz band to devices only compatible with the 802.11n standard. This, in theory, can alleviate congestion on domestic networks and ensure more bandwidth availability for devices compatible with the newer 802.11.ac band.

    Qualcomm says the self-organising features integrated into the new platform means it will become much easier to register and configure new devices on the network; while automatically allocating capacity for devices based on real-time conditions.

    “As people rely on their home network to support more devices accessing the internet and streaming media, Wi-Fi is being stretched to the limit,” said Gopi Sirineni, vice president of product management, Qualcomm Atheros, Inc. “We are changing the game with features designed to deliver the best possible Wi-Fi experiences and now, uniquely, we are driving those technologies into more cost-effective products to extend the benefits to a wider swath of consumers.”

    IoT is also in Qualcomm’s sights, as it unveiled a new chip set targeting low-power smart home devices. It says the QCA4012 chip brings dual band wifi, enhanced security, low power and small form factor for connected devices. Companion SDKs and services from partners Ayla, Exosite and Iota Labs include API interfaces and other tools to support IoT device and cloud integration.

    “IOTA Labs has developed cutting edge IoT solutions integrating Qualcomm Technologies’ latest products with the IOTA Labs platform,” said Amit Singh, director and co-founder, IOTA Labs. “IOTA Labs’s leading edge IoT platform and experience acts as an accelerator for clients to transform their offerings into leading smarter products and services with a lower cost of ownership.”

    The Snapdragon Wear 1100, included in the raft of announcements, joins the product line and targets consumer-led IoT products, including smart-accessories and wearable tech. Qualcomm says it has been designed to target  the wearable segment where a smaller size, longer battery life, smarter sensing, enhanced security. It also comes with a modem capable of LTE, wifi and Bluetooth support.

    “We are delighted to add Snapdragon Wear 1100 to our Snapdragon Wear family, thus making it easier for customers to develop connected wearables with targeted use cases such as kid and elderly tracking,” said Anthony Murray, SVP of IoT for Qualcomm Technologies. “We are actively working with the broader ecosystem to accelerate wearables innovation and are excited to announce a series of customer collaborations today.”

    Finally, Qualcomm also announced a fixed networking launch which it claims will help operators deliver up to 1 Gbps data rates on existing infrastructure up to 100 meters. The GigaDSL chipsets are intended to support gigabit data rates on existing telephone lines providing a high-speed extension for VDSL without losing spectrum capacity. It says existing infrastructure can be upgraded to the new processors without having to rip up the network and start again. The product line will become available from June for both fibre to the building and customer premises equipment.

    “With these new GigaDSL product offerings, we are able to meet carriers’ broadband goals, complementing fiber deployment in time for major events, such as the 2018 Winter Games in Korea and the 2020 Summer Games in Japan,” said Irvind Ghai, VP of product management at Qualcomm Atheros.

     

    Read more »
  • COMPUFOX SFP+ Direct Attach Copper Cables Solution

    Overview
    SFP+ Direct Attach Copper Cable, also known as Twinax Cable, is an SFP+ cable assembly used in rack connections between servers and switches. It consists of a high speed copper cable and two SFP+ copper modules. The SFP+ copper modules allow hardware manufactures to achieve high port density, configurability and utilization at a very low cost and reduced power budget.

    Direct Attach Cable assemblies are a high speed, cost-effective alternative to fiber optic cables in 10Gb Ethernet, 8Gb Fibre Channel and InfiniBand applications. They are suitable for short distances, making them ideal for highly cost-effective networking connectivity within a rack and between adjacent racks. They enable hardware OEMs and data center operators to achieve high port density and configurability at a low cost and reduced power requirement.

    Compufox SFP+ copper cable assemblies meet the industry MSA for signal integrity performance. The cables are hot-removable and hot-insertable: You can remove and replace them without powering off the switch or disrupting switch functions. A cable comprises a low-voltage cable assembly that connects directly into two SFP+ ports, one at each end of the cable. The cables use high-performance integrated duplex serial data links for bidirectional communication and are designed for data rates of up to 10 Gbps.

    Types of SFP+ Direct Attach Copper Cables

    SFP+ Direct Attach Copper Cable assemblies generally have two types which are Passive and Active versions.

    SFP+ Passive Copper Cable
    SFP+ passive copper cable assemblies offer high-speed connectivity between active equipment with SFP+ ports. The passive assemblies are compatible with hubs, switches, routers, servers, and network interface cards (NICs) from leading electronics manufacturers like Cisco, Juniper, etc.
     
    SFP+ Active Copper Cable
    SFP+ active copper cable assemblies contain low power circuitry in the connector to boost the signal and are driven from the port without additional power requirements. The active version provides a low cost alternative to optical transceivers, and are generally used for end of row or middle of row data center architectures for interconnect distances of up to 15 meters.

     

    Applications of SFP+ Direct Attach Copper Cables

    -Networking – servers, routers and hubs
    -Enterprise storage
    -Telecommunication equipment
    -Network Interface Cards (NICs)
    -10Gb Ethernet and Gigabit Ethernet (IEEE802.3ae)
    -Fibre Channel over Ethernet: 1, 2, 4 and 8G
    -InfiniBand standard SDR (2.5Gbps), DDR (5Gbps), and QDR (10Gbps)
    -Serial data transmission
    -High capacity I/O in Storage Area Networks, Network Attached Storage, and Storage Servers
    -Switched fabric I/O such as ultra high bandwidth switches and routers
    -Data center cabling infrastructure
    -High density connections between networking equipment

     

    Compufox SFP+ Direct Attach Copper Cables Solution

    Compufox SFP+ twinax copper cables are avaliable with custom version and brand compatible version. All of them are 100% compatible with major brands like Cisco, HP, Juniper, Enterasys, Extreme, H3C and so on. If you want to order high quality compatible SFP+ cables and get worldwide delivery, we are your best choice.

    For instance, our compatible Cisco SFP+ Copper Twinax direct-attach cables are suitable for very short distances and offer a cost-effective way to connect within racks and across adjacent racks. We can provide both passive Twinax cables in lengths of 1, 3 and 5 meters, and active Twinax cables in lengths of 7 and 10 meters. (Tips: The lengths can be customized up to the customers' requirements.)

    Features
    -1m/3m/5m/7m/10m/12m available
    -RoHS Compatible
    -Enhanced EMI suppression
    -Low power consumption
    -Compatible to SFP+ MSA
    -Hot-pluggable SFP 20PIN footprint
    -Parallel pair cable
    -24AWG through 30AWG cable available
    -Data rates backward compatible to 1Gbps
    -Support serial multi-gigabit data rates up to 10Gbps
    -Support for 1x, 2x, 4x and 8x Fibre Channel data rates
    -Low cost alternative to fiber optic cable assemblies
    -Pull-to-release retractable pin latch
    -I/O Connector designed for high speed differential signal applications
    -Temperature Range: 0-70°C
    -Passive and Active assemblies available (Active Version: Low Power Consumption: < 0.5W Power Supply: +3.3V)

     

    FAQ of Compufox SFP+ Direct Attach Copper Cables

    Q: What are the performance requirements for the cable assembly?
    A: Our SFP+ copper passive and active cable assemblies meet the signal integrity requirements defined by the industry MSA SFF-8431. We can custom engineer cable assemblies to meet the requirements of a customer’s specific system architecture.

    Q: Are passive or active cable assemblies required?
    A: Passive cables have no signal amplification in the assembly and rely on host system Electronic Dispersion Compensation (EDC) for signal amplification/equalization. Active cable assemblies have signal amplification and equalization built into the assembly. Active cable assemblies are typically used in host systems that do not employ EDC. This solution can be a cost savings to the customer.

    Q: What wire gauge is required?
    A: We offer SFP+ cable assemblies in wire gauges to support customers' specific cable routing requirements. Smaller wire gauges results in reduced weight, improved airflow and a more flexible cable for ease of routing.

    Q: What cable lengths are required?
    A: Cable length and wire gauge are related to the performance characteristics of the cable assembly. Longer cable lengths require heavier wire gauge, while shorter cable lengths can utilize a smaller gauge cable.

    For all you SFP+ Direct attach cables, please see link below. We carry compatible cables for most major brands.

    http://www.compufox.com/SFP_Cables_s/337.htm

        

    Read more »
RSS