Fiberopticvideos.com
Welcome
Login / Register

Most Popular Articles


  • Compact Optical Splitter Module for PON Architecture FTTH Deployment

     

    Passive Optical Network (PON) system has expanded extensively as an optical network in the construction of Fiber To The Home (FTTH) economically. To allow multiple users to share an optical fiber in a PON, the Optical Splitter that branches an optical signal is indispensable. Recently, plug-and-play structures that make use of modules and connectors are desired to simplify the installation construction of optical splitters. Moreover, because the splitter module is installed in the outside plant, high reliability that can endure harsh environmental conditions is a critical requirement. In addition, compactness and cost savings are also important considerations. Therefore, we have developed it by economically using a superior flame-retardant plasticresin for the module case. We have confirmed that the optical splitter modules have excellent optical characteristics and sufficient reliability.


    1. Introduction of Optical Splitter Modules

    PON system has expanded extensively as an optical network in the construction of FTTH economically. As shown in Fig. 1, PON architecture allows a signal transmitted over a single optical fiber from the telephone exchange office to be shared with multiple users, hence achieving cost reduction per subscriber. Planar Lightwave Circuit (PLC) splitter, an optical splitter is a key to realize the branching of optical signal in the telecommunication network, and currently has a maximum of 32 split ratio capability.

    PON system structure

    Installation of optical splitter is simplified with the application of latch-on or snap method that can expedite the process with quick plug-in action. This plug-and-play method is commonly applied at the interconnection points in the FTTH network (This method enables field installation of optical components without any special tools or skills in managing bare optical fibers). To effectively deploy with such simple techniques and modular designs, connectorized components are essential to be integrated in the structure design of optical splitters. In addition, flexibility of network is achieved with the application of module terminated with connector cord, which allows easy reconfiguration of the network. Furthermore, in the FTTH PON architecture, the function of Fiber Distribution Hub (FDH) is to house optical splitter outdoor, therefore the FDH is critical in ensuring high reliability against environmental factors. Due to the space constraint in the FDH, down-sizing of optical splitter module design is done. The pervasive FTTH deployment worldwide has been called for an imminent need to develop low-cost solutions. The newly developed small sized and lightweight optical splitter is made from retardant plastic resin with sturdiness comparable to the conventional metal packaging in withstanding outdoor environmental conditions, but at a fraction of its original cost. This article illustrates the development of 1×16, 1×32 and 2×32 Wavelength Division Multiplexing (WDM) optical splitter module. The characteristics and reliability evaluation will also be discussed in this article.

    2. Structure of Optical Splitter Modules

    2.1. PLC-Type Splitter

    As shown in Fig. 2, the optical fiber is being branched to 32 outputs through a 1×32 PLC-type optical splitter. PLC chip is a silica glass embedded with optical wave circuit. The circuit pattern is designed to branch a single input into multiple output channels. Optical fiber is adhered to PLC chip with resin curedby ultraviolet exposure; this interface conforms to Telcordia GR-1209 and GR-1221 test conditions, hence good reliability is ensured. Furthermore, inorder to actualize the size reduction, bend insensitive Single Mode Fiber (SMF) has been introduced into this module.

    1x32 PLC Splitter

    2.2. Flame Retardant Plastic Package

    The structure of optical splitter module developed is shown in Fig. 3. Bend insensitive fiber with bending radius of 15 mm is applied to the optical splitter module to achieve a considerable size reduction of the packed module. The overall dimension of L118mm×D87 mm×H13 mm is 3/5 of the size of the conventional optical module utilizing SMF of bending radius 30 mm. In addition, as a flame retardant plastic resin has replaced metallic materialin the splitter packaging, the weight decreases to 1/3 of the conventional metallic packaging version.

    1x32 splitter external structure

    Figure 4 illustrates the internal configuration of the optical splitter module. The splitter module is terminated with optical connector pigtails. The 2 mm fiber cords are fixed onto the cable retainer with adhesive.This structure is designed to withstand tensile strength of maximum 68.6 N. Moreover, as the optical cord has a similar structure to the loose tube cables, allowing the optical fiber free movement within the cord effects the expansion and contraction of the optical cord that will not exert any external tension onto the fiber.

    1x32 splitter internal structure

    The structure of strain relief boot is shown in Fig.5. The boot is designed to control the bending radius to a minimum of optical fiber limit, i.e., 15 mm. This prevents an increase in attenuation brought upon by fiber bend. The flexible boot developed has taken factors like hardness, thickness and the quantity of cord per boot into the design considerations to control the bending radius to a minimum of 15 mm when a loadis applied at 90° bend to the optical cord perpendicularly.

    strain relief boot model

    3. OPTICAL PERFORMANCE AND CHARACTERISTIC

    3.1. Functionality of FDH

    Figure 6 captures the appearance of FDH system in configuration with optical splitter module load. The hub, optical connector, and optical adapters are all mounted onto a panel to enable ease of operation with a latch mechanism. The pigtail is elegantly managed in a U-shape through the mandrel. This plug-and-play method makes installation extremely simple and efficient.

    installed splitter modules in FDH

    3.2. Fundamental Optical Characteristics

    The 1×16 and 1×32 splitter modules were fabricated to be mountable onto the above described fiber distribution hub. The vacant port (a port which is not in service) present in the FDH will result in back reflections of the optical signal. To prevent return loss from the end face of vacant port, SC connector is polished to an Angled Physical Contact (APC) interface. Data below tabulates the optical characteristics of the optical splitter module, inclusive of the connector pigtails.

    The histograms shown in Figs. 7 and 8 illustratethe insertion loss performance of 1×16 and 1×32 optical splitter module respectively. At operating wavelength 1310 nm, the average insertion loss of 1×16 splitter stands at 13.23 dB while that of 1×32 splitter is 16.33 dB. Similarly, at 1550 nm operation wavelength, the insertion loss of 1×16 and 1×32 splitter module is 13.10 dB and 16.22 dB respectively. In addition, the standard deviation of 1×16 splitter is 0.29 dB while 1×32 splitter yields a standard deviation of 0.34dB. At the same time, this value decreases to 0.23 dB for 1×16 splitter and 0.28 dB for the 1×32 splitter at wavelength 1550 nm.

    1x16 splitter insertion loss

    The performances of other optical characteristics apart from insertion loss are shown in Table 1. These results show consistent good performances, as exhibited in the insertion loss histogram, in characteristics including uniformity, return loss and PDL values.

    optical characteristics measurement

    3.3. Temperature dependent loss

    History from past experimental results has shown that components terminated with optical pigtail cord are susceptible to insertion loss fluctuation with temperature change. To isolate the effects of cordage expansion/contraction on the optical fiber within, the optical cord is designed to allow free movement of optical fiber, thus eliminating the external stress fromthe expansion/contraction of the cord. Figure 9 depicts the insertion loss variation of the 1×32 optical splitter module during temperature cycling from −40 °C to +85 °C. The average, minimum, and maximum values obtained from the 32 output ports are illustrated in the graph shown in Fig. 9. From the graph, the maximum loss deviation between the ports with maximum and minimum insertion loss is 0.17 dB. This result has an evident exceptional stability of the optical splitter module that is developed.

    1x32 splitter insertion loss temperature dependence

    3.4. Wavelength dependent loss

    The wavelength dependent loss of the 1×32 optical splitter module is shown in Fig. 10. The performances of insertion losses over wavelengths from 1260 nm to 1680 nm are measured. Again, the average loss from 32 ports and minimum and maximum wavelength dependent losses are illustrated in the graph. The average deviation is 0.36 dB while the maximum deviation from all the 32 ports is 0.86 dB.

    1x32 splitter insertion loss wavelength dependence

    This proves that the splitter module has shown resilience in insertion loss variation over a broad spectrum of wavelength.

    A variety of optical devices are stored in this optical splitter module, making it multifunctional. An example is the 2×32 WDM optical splitter module shown in Fig. 11 and the structure of its cable retainer in Fig.12. A WDM filter was built in front of a 1×32 splitter module, enabling the structure to have multiple wavelengths.

    2x32 WDM splitter configuration

    Figure 13 shows the wavelength dependent loss of the 2×32 WDM optical splitter module. With the WDM filter, the wavelength ranging from 1530nm to1570nm are transmitted from the B port, and the other wavelength ranges are transmitted from the A port. The wavelength dependent loss of A port and B port are split evenly among the 32 fibers, hence excellent loss performance is obtained in each port.

    2x32 WDM splitter insertion loss wavelength dependence

    4. Reliability of Optical Splitter Modules

    The reliability of 1×32 splitter module is evaluated in accordance to test procedures stipulated in the Telcordia GR-1209 and GR-1221. The test conditions and the results of the 1×32 splitter module measured at 1550 nm are shown in Table 2. The average, maximum, and minimum values of 32 output ports measured are recorded in Table 2. The results of side pulltest and cable retention test are maximum in-situ datamonitored during load application onto the cable cord. On the other hand, the recorded data of damp heat, temperature cycling, mechanical shock, vibration, and water immersion shows the variation of insertion loss before and after the test conditions. From the results, it is confirmed about the reliability of 1×32 splitter module.

    1x32 splitter reliability test

    The results of high temperature and humidity test are depicted in Fig. 14. The optical splitter samples underwent a total of 2000 hours of storage at 85 °C and of 85% relative humidity. Insertion loss data at 100 hrs, 168 hrs, 500 hrs, 1000 hrs, and 2000 hrs juncture were measured. The average insertion loss of the 32 ports, maximum and minimum insertion loss measured at 1550 nm are displayed in the graph. From the graph in Fig. 14, it is concluded that there is very minimal loss variation even after 2000 hrs. The optical splitter module has shown good stability when exposed to high temperature and humidity conditions.

    insertion loss variation of loss during damp heat test

    Furthermore, to meet the flame retardant requirements for optical components and accessories, we have applied frame retardant plastic material of 1.5 mm thickness complying to UL-94 V-0. On the same note, the jacket of optical fiber cord is made of grade V-0 flame retardant PVC.

    5. Conclusion

    A compact and economical optical splitter that boasts of superior optical performance and reliability against stringent environmental conditions suited for outdoor installation has been successfully developed. This plug-and-play design for installation of the above optical splitter has enabled simple and speedy installation, at the same time provided added flexibility for future network reconfigurations, thus making this optical splitter module the perfect solution for PON architecture FTTH deployment.

     

    Read more »
  • Why Does FTTH Develop So Rapidly?

    FTTH (Fiber to the Home) is a form of fiber optic communication delivery in which the optical fiber reached the end users home or office space from the local exchange (service provider). FTTH was first introduced in 1999 and Japan was the first country to launch a major FTTH program. Now the deployment of  FTTH is increasing rapidly. There are more than 100 million consumers use direct fiber optic connections worldwide. Why does FTTH develop so rapidly?

    FTTH is a reliable and efficient technology which holds many advantages such as high bandwidth, low cost, fast speed and so on. This is why it is so popular with people and develops so rapidly. Now, let’s take a look at its advantages in the following.

    FTTH

    • The most important benefit to FTTH is that it delivers high bandwidth and is a reliable and efficient technology. In a network, bandwidth is the ability to carry information. The more bandwidth, the more information can be carried in a given amount of time. Experts from FTTH Council say that FTTH is the only technology to meet consumers’ high bandwidth demands.
    • Even though FTTH can provide the greatly enhanced bandwidth, the cost is not very high. According to the FTTH Council, cable companies spent $84 billion to pass almost 100 million households a decade ago with lower bandwidth and lower reliability. But it costs much less in today’s dollars to wire these households with FTTH technology.
    • FTTH can provide faster connection speeds and larger carrying capacity than twisted pair conductors. For example, a single copper pair conductor can only carry six phone calls, while a single Fiber pair can carry more than 2.5 million phone calls simultaneously. More and more companies from different business areas are installing it in thousands of locations all over the world.
    • FTTH is also the only technology that can handle the futuristic internet uses when 3D “holographic” high-definition television and games (products already in use in industry, and on the drawing boards at big consumer electronics firms) will be in everyday use in households around the world. Think 20 to 30 Gigabits per second in a decade. No current technologies can reach this purpose.
    • The FTTH broadband connection will bring about the creation of new products as they open new possibilities for data transmission rate. Just as some items that now may seem very common were not even on the drawing board 5 or 10 years ago, such as mobile video, iPods, HDTV, telemedicine, remote pet monitoring and thousands of other products. FTTH broadband connections will inspire new products and services and could open entire new sectors in the business world, experts at the FTTH Council say.
    • FTTH broadband connections will also allow consumers to “bundle” their communications services. For example, a consumer could receive telephone, video, audio, television and just about any other kind of digital data stream using a simple FTTH broadband connection. This arrangement would more cost-effective and simpler than receiving those services via different lines.

    As the demand for broadband capacity continues to grow, it’s likely governments and private developers will do more to bring FTTH broadband connections to more homes. According to a report, Asian countries tend to outpace the rest of the world in FTTH market penetration. Because governments of Asia Pacific countries have made FTTH broadband connections an important strategic consideration in building their infrastructure. South Korea, one of Asian countries, is a world leader with more than 31 percent of its households boasting FTTH broadband connections. Other countries like Japan, the United States, and some western countries are also building their FTTH broadband connections network largely. It’s an inevitable trend that FTTH will continue to grow worldwide.

    Read more »
  • MPO/MTP Solutions for High Density Applications

    As the bandwidth demands grow rapidly, data centers have to achieve ultra-high density in cabling to accommodate all connections. MPO/MTP technology with multi-fiber connectors offers ideal conditions for high-performance data networks in data centers. This article will introduce information about MPO/MTP solutions, such as MPO/MTP trunk cable, MPO/MTP harness cable and MPO/MTP cassettes.

    MTP/MPO Trunk Cable

    MTP/MPO trunk cables are terminated with the MTP/MPO connectors (as shown in the following figure). Trunk cables are available with 12, 24, 48 and 72 fibers. MTP/MPO trunk cables are designed for data center applications. The plug and play solutions uses micro core cable to maximize bend radius and minimize cable weight and size. Besides, MTP/MPO trunk cables also have the following advantages:

    • Saving installation time–With the special plug and play design, MTP/MPO trunk cables can be incorporated and immediately plugged in. It greatly helps reduce the installation time.
    • Decreasing cable volume–MTP/MPO trunk cables have very small diameters, which decrease the cable volume and improve the air-conditioning conditions in data centers.
    • High quality–MTP/MPO trunk cables are factory pre-terminated, tested and packed along with the test reports. These reports serve as long-term documentation and quality control.

    Trunk-Cable

    MPO/MTP Harness Cable

    MPO/MTP harness cable (as shown in the following figure) is also called MPO/MTP breakout cable or MPO/MTP fan-out cable. This cable has a single MTP connector on one end that breaks out into 6 or 12 connectors (LC, SC, ST, etc.). It’s available in 4, 6, 8, or 12 fiber ribbon configurations with lengths about 10, 20, 30 meters and other customized lengths. MPO/MTP harness cable is designed for high density applications with required high performance. It’s good to optimize network performance. Other benefits are shown as below:

    • Saving space–The active equipment and backbone cable is good for saving space.
    • Easy deployment–Factory terminated system saves installation and network reconfiguration time.
    • Reliability–High standard components are used in the manufacturing process to guarantee the product quality.

    Harness-Cable

    MPO/MTP Cassette

    MPO/MTP cassette modules provide secure transition between MPO/MTP and LC or SC discrete connectors. They are used to interconnect MPO/MTP backbones with LC or SC patching. MPO/MTP Cassettes are designed to reduce installation time and cost for an optical network infrastructure in the premises environment. The modular system allows for rapid deployment of high density data center infrastructure

    Cassette

    as well as improved troubleshooting and reconfiguration during moves, addons, and changes. Aside from that, it has other advantages:

    • MPO/MTP interface–MPO/MTP components feature superior optical and mechanical properties.
    • Optimized performance–Low insertion losses and power penalties in tight power budget, high-speed network environments.
    • High density–12 or 24 fiber cassettes can be mounted in 1U scaling up to 72 or in 3U scaling up to 336 discrete LC connectors.

    The above shows that the MPO/MTP system is a good solution for data center requirements. This high density, scalable system is designed to enable thousands of connections.

    Read more »
  • Polarization-Maintaining Fiber Tutorial

    Introduction to Polarization

    As light passes through a point in space, the direction and amplitude of the vibrating electric field traces out a path in time. A polarized lightwave signal is represented by electric and magnetic field vectors that lie at right angles to one another in a transverse plane (a plane perpendicular to the direction of travel). Polarization is defined in terms of the pattern traced out in the transverse plane by the electric field vector as a function of time.

    Polarization can be classified as linear, elliptical or circular, in them the linear polarization is the simplest. Whichever polarization can be a problem in the fiber optic transmission.

    FiberStore Polarization Coordinate System

    More and more telecommunication and fiber optic measuring systems refer to devices that analyse the interference of two optical waves. The information given by the interferences cannot be used unless the combined amplitude is stable in time, which means, that the waves are in the same state of polarization. In those cases it is necessary to use fibers that transmit a stable state of polarization. And polarization-maintaining fiber was developed to this problem. (The polarization-maintaining fiber will be called PM fiber for short in the following contents.)

     

    What Is PM Fiber?

    The polarization of light propagating in the fiber gradually changes in an uncontrolled (and wavelength-dependent) way, which also depends on any bending of the fiber and on its temperature. Specialised fibers are required to achieve optical performances, which are affected by the polarization of the light travelling through the fiber. Many systems such as fiber interferometers and sensors, fiber laser and electro-optic modulators, also suffer from Polarization-Dependent Loss (PDL) that can affect system performance. This problem can be fixed by using a specialty fiber so called PM Fiber.

     

    Principle of PM Fiber

    Provided that the polarization of light launched into the fiber is aligned with one of the birefringent axes, this polarization state will be preserved even if the fiber is bent. The physical principle behind this can be understood in terms of coherent mode coupling. The propagation constants of the two polarization modes are different due to the strong birefringence, so that the relative phase of such copropagating modes rapidly drifts away. Therefore, any disturbance along the fiber can effectively couple both modes only if it has a significant spatial Fourier component with a wavenumber which matches the difference of the propagation constants of the two polarization modes. If this difference is large enough, the usual disturbances in the fiber are too slowly varying to do effective mode coupling. Therefore, the principle of PM fiber is to make the difference large enough.

    In the most common optical fiber telecommunications applications, PM fiber is used to guide light in a linearly polarised state from one place to another. To achieve this result, several conditions must be met. Input light must be highly polarised to avoid launching both slow and fast axis modes, a condition in which the output polarization state is unpredictable.

    The electric field of the input light must be accurately aligned with a principal axis (the slow axis by industry convention) of the fiber for the same reason. If the PM fiber path cable consists of segments of fiber joined by fiber optic connectors or splices, rotational alignment of the mating fibers is critical. In addition, connectors must have been installed on the PM fibers in such a way that internal stresses do not cause the electric field to be projected onto the unintended axis of the fiber.

     

    Types of PM Fibers

    Circular PM Fibers

    It is possible to introduce circular-birefringence in a fiber so that the two orthogonally polarized modes of the fiber—the so called Circular PM fiber—are clockwise and counter-clockwise circularly polarized. The most common way to achieve circular-birefringence in a round (axially symmetrical) fiber is to twist it to produce a difference between the propagation constants of the clockwise and counterclockwise circularly polarized fundamental modes. Thus, these two circular polarization modes are decoupled. Also, it is possible to conceive externally applied stress whose direction varies azimuthally along the fiber length causing circular-birefringence in the fiber. If a fiber is twisted, a torsional stress is introduced and leads to optical-activity in proportion to the twist.

    Circular-birefringence can also be obtained by making the core of a fiber follows a helical path inside the cladding. This makes the propagating light, constrained to move along a helical path, experience an optical rotation. The birefringence achieved is only due to geometrical effects. Such fibers can operate as a single mode, and suffer high losses at high order modes.

    Circular PM fiber with Helical-core finds applications in sensing electric current through Faraday effect. The fibers have been fabricated from composite rod and tube preforms, where the helix is formed by spinning the preform during the fiber drawing process.

     

    Linear PM Fibers

    There are manily two types of linear PM fibers which are single-polarization type and birefringent fiber type. The single-polarization type is characterized by a large transmission loss difference between the two polarizations of the fundamental mode. And the birefringent fiber type is such that the propagation constants between the two polarizations of the fundamental mode are significantly different. Linear polarization may be maintained using various fiber designs which are reviewed next.

    Linear PM Fibers With Side Pits and Side Tunnels

    Side-pit fibers incorporate two pits of refractive index less than the cladding index, on each side of the central core. This type of fiber has a W-type index profile along the x-axis and a step-index profile along the y-axis. A side-tunnel fiber is a special case of side-pit structure. In these linear PM fibers, a geometrical anisotropy is introduced in the core to obtain a birefringent fibers.

     

    Linear PM Fibers With Stress Applied Parts

    An effective method of introducing high birefringence in optical fibers is through introducing an asymmetric stress with two-fold geometrical symmetry in the core of the fiber. The stress changes the refractive index of the core due to photoelastic effect, seen by the modes polarized along the principal axes of the fiber, and results in birefringence. The required stress is obtained by introducing two identical and isolated Stress Applied Parts (SAPs), positioned in the cladding region on opposite sides of the core. Therefore, no spurious mode is propagated through the SAPs, as long as the refractive index of the SAPs is less than or equal to that of the cladding.

    The most common shapes used for the SAPs are: bow-tie shape and circular shape. These fibers are respectively referred to as Bow-tie Fiber and PANDA Fiber. The cross sections of these two types of fibers are shown in the figure below. The modal birefringence introduced by these fibers represents both geometrical and stress-induced birefringences. In the case of a circular-core fiber, the geometrical birefringence is negligibly small. It has been shown that placing the SAPs close to the core improves the birefringence of these fibers, but they must be placed sufficiently close to the core so that the fiber loss is not increased especially that SAPs are doped with materials other than silica. The PANDA fiber has been improved further to achieve high modal birefringence, very low-loss and low cross-talk.

    PANDA Fiber and Bow-tie Fiber

    PANDA Fiber (left) and Bow-tie Fiber (right). The built-in stress elements made from a different type of glass are shown with a darker gray tone.

    Tips: At present the most popular PM fiber in the industry is the circular PANDA fiber. One advantage of PANDA fiber over most other PM fibers is that the fiber core size and numerical aperture is compatible with regular single mode fiber. This ensures minimum losses in devices using both types of fibers.

     

    Linear PM Fibers With Elliptical Structures

    The first proposal on practical low-loss single-polarization fiber was experimentally studied for three fiber structures: elliptical core, elliptical clad, and elliptical jacket fibers. Early research on elliptical-core fibers dealt with the computation of the polarization birefringence. In the first stage, propagation characteristics of rectangular dielectric waveguides were used to estimate birefringence of elliptical-core fibers. In the first experiment with PM fiber, a fiber having a dumbbell-shaped core was fabricated. The beat length can be reduced by increasing the core-cladding refractive index difference. However, the index difference cannot be increased too much due to practical limitations. Increasing the index difference increases the transmission loss, and splicing would become difficult because the core radius must be reduced. Typical values of birefringence for the elliptical core fiber are higher than elliptical clad fiber. However, losses were higher in the elliptical core than losses in the elliptical clad fibers.

     

    Linear PM Fibers With Refractive Index Modulation

    One way to increase the bandwidth of single-polarization fiber, which separates the cutoff wavelength of the two orthogonal fundamental modes, is by selecting a refractive-index profile which allows only one polarization state to be in cutoff. High birefringence was achieved by introducing an azimuthal modulation of the refractive index of the inner cladding in a three-layer elliptical fiber. A perturbation approach was employed to analyze the three-layer elliptical fiber, assuming a rectangular-core waveguide as the reference structure. Examination of birefringence in three-layer elliptical fibers demonstrated that a proper azimuthal modulation of the inner cladding index can increase the birefringence and extend the wavelength range for single-polarization operation.

    A refractive index profile is called Butterfly profile. It is an asymmetric W profile, consisting of a uniform core, surrounded by a cladding in which the profile has a maximum value of ncl and varies both radially and azimuthally, with maximum depression along the x-axis. This profile has two attributes to realize a single-mode single-polarization operation. First, the profile is not symmetric, which makes the propagation constants of the two orthogonal fundamental modes dissimilar, and secondly, the depression within the cladding ensures that each mode has a cutoff wavelength. The butterfly fiber is weakly guiding, thus modal fields and propagation constants can be determined from solutions of the scalar wave equation. The solutions involve trigonometric and Mathieu functions describing the transverse coordinates dependence in the core and cladding of the fiber. These functions are not orthogonal to one another which requires an infinite set of each to describe the modal fields in the different regions and satisfy the boundary conditions. The geometrical birefringence plots generated vs. the normalized frequency V showed that increasing the asymmetry through the depth of the refractive index depression along the x-axis increases the maximum value of the birefringence and the value of V at which this occurs. The peak value of birefringence is a characteristic of noncircular fibers. The modal birefringence can be increased by introducing anisotropy in the fiber which can be described by attributing different refractive-index profiles to the two polarizations of a mode. The geometric birefringence is smaller than the anisptropic birefringence. However, the depression in the cladding of the butterfly profile gives the two polarizations of fundamental mode cutoff wavelengths, which are separated by a wavelength window in which single-polarization single-mode operation is possible.

     

    Applications of PM Fibers

    PM fibers are applied in devices where the polarization state cannot be allowed to drift, e.g. as a result of temperature changes. Examples are fiber interferometers and certain fiber lasers. A disadvantage of using such fibers is that usually an exact alignment of the polarization direction is required, which makes production more cumbersome. Also, propagation losses are higher than for standard fiber, and not all kinds of fibers are easily obtained in polarization-preserving form.

    PM fibers are used in special applications, such as in fiber optic sensing, interferometry and quantum key distribution. They are also commonly used in telecommunications for the connection between a source laser and a modulator, since the modulator requires polarized light as input. They are rarely used for long-distance transmission, because PM fiber is expensive and has higher attenuation than single mode fiber.

     

    Requirments for Using PM Fibers

    Termination: When PM fibers are terminated with fiber connectors, it is very important that the stress rods line up with the connector, usually in line with the connector key.

    Splicing: PM fiber also requires a great deal of care when it is spliced. Not only the X, Y and Z alignment have to be perfect when the fiber is melted together, the rotational alignment must also be perfect, so that the stress rods align exactly.

    Another requirement is that the launch conditions at the optical fiber end face must be consistent with the direction of the transverse major axis of the fiber cross section.

    Read more »
  • Introduction to Bi-Directional Transceiver Modules

    Almost all modern optical transceivers utilize two fibers to transmit data between switches, firewalls, servers, routers, etc. The first fiber is dedicated to receiving data from networking equipment, and the second fiber is dedicating to transmitting data to the networking equipment. But there is a type of fiber optic transceiver module called BiDi (Bi-Directional) transceiver to break this rule. What's BiDi transceiver? How does it work? And why people believe it will have broad market prospect? This tutorial will give you the answer.

    What's BiDi Transceiver?

    BiDi transceiver is a type of fiber optic transceivers which is used WDM (Wavelength Division Multiplexing) Bi-directional transmission technology so that it can achieve the transmission of optical channels on a fiber propagating simultaneously in both directions. BiDi transceiver is only with one port which uses an integral bidirectional coupler to transmit and receive signals over a single fiber optical cable. Thus, it must be used in pairs.

    How Does BiDi Transceiver Work

    The primary difference between BiDi transceivers and traditional two-fiber fiber optic transceivers is that BiDi transceivers are fitted with Wavelength Division Multiplexing (WDM) couplers, also known as diplexers, which combine and separate data transmitted over a single fiber based on the wavelengths of the light. For this reason, BiDi transceivers are also referred to as WDM transceivers.

    To work effectively, BiDi transceivers must be deployed in matched pairs, with their diplexers tuned to match the expected wavelength of the transmitter and receiver that they will be transmitting data from or to.

    For example, if paired BiDi transceivers are being used to connect Device A (Upstream) and Device B (Downstream), as shown in the figure below, then:

    Transceiver A's diplexer must have a receiving wavelength of 1550nm and a transmit wavelength of 1310nmTransceiver B's diplexer must have a receiving wavelength of 1310nm and a transmit wavelength of 1550nm
    Diplexers at Work in BiDi Optical Ethernet Transceivers

    Advantages of BiDi Transceivers

    The obvious advantage of utilizing BiDi transceivers, such as SFP+- BiDi and SFP-BiDi transceivers, is the reduction in fiber cabling infrastructure costs by reducing the number of fiber patch panel ports, reducing the amount of tray space dedicated to fiber management, and requiring less fiber cable.

    While BiDi transceivers (a.k.a. WDM transceivers) cost more to initially purchase than traditional two-fiber transceivers, they utilize half the amount of fiber per unit of distance. For many networks, the cost savings of utilizing less fiber is enough to more than offset the higher purchase price of BiDi transceivers.

    Read more »
RSS