Fiberopticvideos.com
Welcome
Login / Register

Most Popular Articles


  • OTDR (Optical Time Domain Reflectometer) Dead Zone Tutorial

     

    OTDR (Optical Time Domain Reflectometer) is a familiar fiber test instrument for technicians or installers to characterize an optical fiber. To understand the specifications which may affect the performance of OTDR can help users get maximum performance from their OTDRs. This tutorial will introduce one of the key specifications—Dead Zone.

    What Is a Dead Zone?

    The OTDR dead zone refers to the distance (or time) where the OTDR cannot detect or precisely localize any event or artifact on the fiber link. It is always prominent at the very beginning of a trace or at any other high reflectance event.

    OTDR_Trace
    Why makes a Dead Zone occur?

    OTDR dead zone is caused by a Fresnel reflection (mainly caused by air gap at OTDR connection) and the subsequent recovery time of the OTDR detector. When a strong reflection occurs, the power received by the photodiode can be more than 4,000 times higher than the backscattered power, which causes detector inside of OTDR to become saturated with reflected light. Thus, it needs time to recover from its saturated condition. During the recovering time, it can not detect the backscattered signal accurately which results in corresponding dead zone on OTDR trace. This is like when your eyes need to recover from looking at the bright sun or the flash of a camera. In general, the higher the reflectance, the longer the dead zone is. Additionally, dead zone is also influenced by the pulse width. A longer pulse width can increase the dynamic range which results in a longer dead zone.

    OTDR connection
    Event Dead Zones & Attenuation Dead Zone

    In general, dead zones on an OTDR trace can be divided into event dead zone and attenuation dead zone.

    OTDR_dead_zone
    Event Dead Zone

    The event dead zone is the minimum distance between the beginning of one reflective event and the point where a consecutive reflective event can be detected. According to the Telcordia definition, event dead zone is the location where the falling edge of the first reflection is 1.5 dB down from the top of the first reflection.

    EDZ
    Attenuation Dead Zone

    The attenuation dead zone is the minimum distance after which a consecutive non-reflective event can be detected and measured. According to the Telcordia definition, it is the location where the signal is within 0.5 dB above or below the backscatter line that follows the first pulse. Thus, the attenuation dead zone specification is always larger than the event dead zone specification.

    ADZ

    Note: In general, to avoid problems caused by the dead zone, a launch cable of sufficient length is always used when testing cables which allows the OTDR trace to settle down after the test pulse is sent into the fiber so that users can analyze the beginning of the cable they are testing.

    The Importance of Dead Zones

    OTDR_testThere is always at least one dead zone in every fiber—where it is connected to the OTDR. The existence of dead zones is an important drawback for OTDR, specially in short-haul applications with a large number of fiber optic components. Thus, it is important to minimize the effects of dead zones wherever possible.

    As mentioned above, dead zones can be reduced by using a lower pulse width, but it will decrease the dynamic range. Thus, it is important to select the right pulse width for the link under test when characterizing a network or a fiber. In general, short pulse width, short dead zone and low power are used for premises fiber testing and troubleshooting to test short links where events are closely spaced, while a long pulse width, long dead zone and high power are used for long-haul fiber testing and communication to reach further distances for longer networks or high-loss networks.

    The shortest-possible event dead zone allows the OTDR to detect closely spaced events in the link. For instance, testing fibers in premises networks (particularly in data centers) requires an OTDR with short event dead zones since the patch cords of the fiber link are often very short. If the dead zones are too long, some connectors may be missed and will not be identified by the technicians, which makes it harder to locate a potential problem.

    Short attenuation dead zones enable the OTDR not only to detect a consecutive event but also to return the loss of closely spaced events. For instance, the loss of a short patch cord within a network can now be known, which helps technicians to have a clear picture of what is actually inside the link.

    Summary

    OTDR is one of the most versatile and widely used fiber optic test equipment which offers users a quick, accurate way to measure insertion loss and shows the overview of the whole system you test. Dead zone, with two general types, is an important specification of OTDR. It is necessary for users to understand dead zone and select the right configuration in order to get maximum OTDR performance during test. In addition, OTDRs of different brands are designed with different minimum dead zone parameters since manufacturers use different testing conditions to measure the dead zones. Users should choose the suitable one according to the requirements and pay particular attention to the pulse width and the reflection value.

     

    Read more »
  • Fiber Optic Overview

    Fiber Optic Communication - The Future Of Networking & Data Transmission

    Fiber optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information.

    First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks. Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Researchers have reached internet speeds of over 100 petabits per second using fiber-optic communication.

    Fiber's advantages has led to its use as the backbone of all of today's communications, telecom, Internet, CATV, etc. - even wireless, where towers are connected on fiber and antennas are using fiber up the towers.

    Fiber Communication Example

     

    Optical Fiber - The Better Solution

    Fiber vs. Copper. Fiber is the better solution!

    This photo from the infancy of fiber optics (to the right) was used to illustrate that one tiny optical fiber could carry more communications signals than a giant copper cable. Today one single mode fiber could carry the same amount of communications as 1000 of those old copper cables!

    Fiber offers thousands of times more bandwidth than copper cables and can go more than 1000 times further before needing repeaters - both of which contribute to the immense economic advantage of fiber optics over copper. You can do a similar analysis for using wireless transmission also, but wireless is limited by the available wireless spectrum which is overcrowded because of everyone's desire to use more mobile devices.

    Why Convert From Copper Cable To Fiber Optic Cable?

    If you need some convincing before you make your first fiber optic cable purchase keep the following facts in mind.

    CheckOptical Fiber - Much More Efficient & Secure

    Fiber optic cable operates much more efficiently and is more secure than traditional copper cabling. Fiber can transmit far more information over greater distance and with a higher clarity while offering a more secure connection. Fiber optic cable is resistant to electromagnetic interference and generates no radiation of its own. This point is important in locations where high levels of security must be maintained. Copper wire radiates energy that can be monitored. In contrast, taps in  Fiber optic cable  Fiber  are easily detected. Copper cable, is also subject to problems with attenuation, capacitance, and crosstalk.

    CheckOptical Fiber - Does Not Require Grounding

    Since fiber is made of glass, which is a bad electrical conductor, it does not require grounding and shields itself from other electrical interference. Fiber cables can be run near electrical cables without fear that it will weaken or interrupt the signal.

    CheckOptical Fiber - Corrosion Resistant

    Fiber optic cable does not corrode and is not as sensitive to water or chemicals. This means you can safely run fiber cable in direct contact with dirt or in close proximity to chemicals (with the proper outer jacket materials).

    CheckOptical Fiber - The Safer Choice

    Since fiber is not a good conductor of electricity, an installer or user will be safe from electrocution if there is a break in the outer jacket and the fiber is exposed.

     

    How Fiber Optic Communication Works

    The process of communicating using fiber-optics involves the following basic steps: Creating the optical signal involving the use of a transmitter, relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak, receiving the optical signal, and converting it into an electrical signal.

    Fiber (or fibre) consists of a strand of pure glass a little larger than a human hair. Fiber optic cable employs photons and pulsing laser light for the transmission of digital signals. Photons pass through the glass with negligible resistance. As light passes through the cable, its rays bounce off the cladding in different ways as shown below. The optic core of fiber optic cable is pure silicon dioxide. The electronic 1s and 0s of computers are converted to optically coded 1s and 0s. A light-emitting diode on one end of the cable then flashes those signals down the cable. At the other end, a simple photodetector collects the light and converts it back to electrical signals for transmission over copper cable networks.

    Fiber light source and transmission illustartion.

    Step index multimode was the first fiber design but is too slow for most uses, due to the dispersion caused by the different path lengths of the various modes. Step index fiber is rare - only POF uses a step index design today.

    Graded index multimode fiber uses variations in the composition of the glass in the core to compensate for the different path lengths of the modes. It offers hundreds of times more bandwidth than step index fiber - up to about 2 gigahertz.

    Singlemode fiber shrinks the core down so small that the light can only travel in one ray. This increases the bandwidth to almost infinity - but it's practically limited to about 100,000 gigahertz - that's still a lot!

     

    Optic Fiber Cable Construction

    Optic Fiber Cable Structure.

     

    Optical fiber consists of a core and a cladding layer, selected for total internal reflection due to the difference in the refractive index between the two. In practical fibers, the cladding is usually coated with a layer of acrylate polymer or polyimide. This coating protects the fiber from damage but does not contribute to its optical waveguide properties.

    Individual coated fibers (or fibers formed into ribbons or bundles) then have a tough resin buffer layer and/or core tube(s) extruded around them to form the cable core. Several layers of protective sheathing, depending on the application, are added to form the cable.

    Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.

    A “dopant” is added to the core to actually make it less pure than the cladding. This changes the way the core transmits light. Because the cladding has different light properties than the core, it tends to keep the light within the core. Because of these properties, fiber optic cable can be bent around corners and can be extended over distances of up to 100 miles.

    A typical laser transmitter can be pulsed billions of times per second. In addition, a single strand of glass can carry light in a number of wavelengths (colors), meaning that the data-carrying capacity of fiber optic cable is potentially thousands of times greater than copper cable.

     

    Types Of Fiber Optic Cable

    • Plastic cable, which works only over a few meters, is inexpensive and works with inexpensive components.
    • Plastic-coated silica cable offers better performance than plastic cable at a little more cost.
    • Single-index monomode fiber cable is used to span extremely long distances. The core is small and provides high bandwidth at long distances. Lasers are used to generate the light signal for single-mode cable. This cable is the most expensive and hardest to handle, but it has the highest bandwidths and distance ratings.
    • Step-Index multimode cable has a relatively large diameter core with high dispersion characteristics. The cable is designed for the LAN environment and light is typically generated with a LED (light-emitting diode).
    • Graded-index multimode cable has multiple layers of glass that contain dispersions enough to provide increases in cable distances.

    Cable specifications list the core and cladding diameters as fractional numbers. For example, the minimum recommended cable type for FDDI (Fiber Distributed Data Interface) is 62.5/125 micron multimode fiber optic cable.That means the core is 62.5 microns and the core with surrounding cladding is a total of 125 microns.

    • The core specifications for step-index and graded-index multimode cables range from 50 to 1,000 microns.
    • The cladding diameter for step mode cables ranges from 125 to 1,050 microns.
    • The core diameter for single-mode step cable is 4 to 10 microns, and the cladding diameter is from 75 to 125 microns.
    Choosing the right Optic Fiber Glass Type/ Fiber Mode.

     

    Indoor Vs. Outdoor Optic Fiber Cable Applications

    For  indoor applications, the jacketed fiber is generally enclosed, with a bundle of flexible fibrous polymer strength members like aramid (e.g. Twaron or Kevlar), in a lightweight plastic cover to form a simple cable. Each end of the cable may be terminated with a specialized optical fiber connector to allow it to be easily connected and disconnected from transmitting and receiving equipment.

    For outdoor applications or use in more strenuous environments, a much more robust cable construction is required. In loose-tube construction the fiber is laid helically into semi-rigid tubes, allowing the cable to stretch without stretching the fiber itself. This protects the fiber from tension during laying and due to temperature changes. Loose-tube fiber may be "dry block" or gel-filled. Dry block offers less protection to the fibers than gel-filled, but costs considerably less. Instead of a loose tube, the fiber may be embedded in a heavy polymer jacket, commonly called "tight buffer" construction. Tight buffer cables are offered for a variety of applications, but the two most common are "Breakout" and "Distribution".

    Breakout Cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal. Distribution Cables  have an overall Kevlar wrapping, a ripcord, and a 900 micrometer buffer coating surrounding each fiber. These fiber units are commonly bundled with additional steel strength members, again with a helical twist to allow for stretching.

    A critical concern in outdoor cabling is to protect the fiber from contamination by water. This is accomplished by use of solid barriers such as copper tubes, and water-repellent jelly or water-absorbing powder surrounding the fiber.

    Finally, the cable may be armored to protect it from environmental hazards, such as construction work or gnawing animals. Undersea cables are more heavily armored in their near-shore portions to protect them from boat anchors, fishing gear, and even sharks, which may be attracted to the electrical power that is carried to power amplifiers or repeaters in the cable.

    Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, dual use as power lines, installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets.

    To purchase your fiber cables, please click link below:

    Fiber Patch Cables

     

     

     

     

    Read more »
  • How to Install or Remove SFP Transceiver Modules on Cisco Device

    The SFP (small form Factor pluggables) transceiver modules are hot-pluggable I/O devices that plug into module sockets. The transceiver connects the electrical circuitry of the module with the optical or copper network. SFP transceiver modules are the key components in today's transmission network. Thus, it is necessary to master the skill of installing or removing a transceiver modules to avoid unnecessary loss. This tutorial are going to guide you how to install or remove SFP transceiver module in a right way.

     

    Things you should Know Before Installing or Removing SFP

    Before removing or installing a Transceiver Module you must disconnect all cables, because of leaving these attached will damage the cables, connectors, and the optical interfaces. At the same time please be aware that do not often remove and install an SFP transceiver and it can shorten its useful life. For this reason transceivers should not be removed or inserted more often than is required. Furthermore, transceiver modules are sensitive to static, so always ensure that you use an ESD wrist strap or comparable grounding device during both installation and removal.

     

    Required Tools

    You will need these tools to install the SFP transceiver module:
    Wrist strap or other personal grounding device to prevent ESD occurrences.Antistatic mat or antistatic foam to set the transceiver on.Fiber-optic end-face cleaning tools and inspection equipment

     

    Installing SFP Transceiver Modules

    SFP transceiver modules can have three types of latching devices to secure an SFP transceiver in a port socket:
    SFP transceiver with a Mylar tab latch.SFP transceiver with an actuator button latch.SFP transceiver that has a bale-clasp latch.
    Types of SFP Latching

    Determine which type of latch your SFP transceiver uses before following the installation and removal procedures.

    Read more »
  • Identify Types of Network Cables and Connectors

    There are three types of network cables: fiber, twisted pair, and coaxial.

    Fiber is the most expensive of the three and can run the longest distance. A number of types of connectors can work with fiber, but three you must know are SC, ST, and LC.

    Twisted pair is commonly used in office settings to connect workstations to hubs or switches. It comes in two varicties: unshielded (UTP) and shielded (STP), The two types of connectors commonly used are RJ-11 (four wires and popular with telephones), and RJ-45 (eight wires and used with xBaseT networks—100BaseT, 1000BaseT, and so forth). Two common wiring standards are T568A and T568B.

    Coaxial cabling is not as popular as it once was, but it's still used with cable television and some legacy networks. The two most regularly used connectors are F-conectors (television cabling) and BNC (10Base2, and so on).

    Fiber

    Fiber-optic cabling is the most expensive type. Although it's an excellent medium, it's often not used because of the cost of implementing it. It has a glass core within a rubber outer coating and uses beams of light rather than electrical signals to relay data. Because light doesn't diminish over distance the way electrical signals do, this cabling can run for distances measured in kilometers with transmission speeds from 100 Mbps up to 1 Gbps higher.

    Fiber optic cable

    Often, fiber is used to connect runs to wiring closets where they break out into UTP or other cabling types, or as other types of backbones. Fiber-optic cable can use either ST, SC, or LC connector. ST is a barrel-shaped connector, whereas SC is squared and easier to connect in small spaces.The LC connector looks similar to SC but adds a flange on the top (much like an RJ-45 connector) to keep it securely connected.

    st sc lc connectors

    Note: In addition to these listed in the A + objectives, other connectors are used with fiber. FC connectors may also be used but are not as common. MT-RJ is a popular connector for two fibers in a small form factor.

    Twisted Pair

    There are two primary types of twisted-pair cabling (with categories beneath cach that are shielded twisted pair (STP) and unshielded twisted pair (UTP). In both cases, the cabling is made up of pairs of wires twisted around each other.

    UTP offers no shielding (hence the name) and is the network cabling type most prone to outside interference. The interference can be from a fluorescent light ballast, eletrical motor, or other such source (known as eletromagnetic interference [EMI]) or from wires being too close together and signals jumping across them (known as crosstalk), STP adds a foil shield around the twisted wires to protect against EMI.

    Twisted Pair

    STP cable uses IBM data connector (IDC) or universal data connector (UDC) ends and connects to token ring networks. While you need to know STP for the exam, you are not required to have any knowledge of the connectors associated with it. You must, however, know that most UTP cable uses RJ-45 connectors, which look like telephone connectors (RJ-11) but have eight wires instead of four.

    RJ-45 connectors

    Two wiring standards are commonly used with twisted-pair cabling:T568A and T568B (sometimes referred to simply as 568A and 568B). These are telecommunications standards from TIA and EIA that specify the pin arrangements for the RJ-45 connectors on UTP or STP cables. The number 568 refers to the order in which the wires within the Category 5 cable are terminated and attached to the connector. The signal is identical for both.

    T568A was the first standard, released in 1991. Ten years later, in 2001, T568B was released. Pin numbers are read left to right, with the connector tab facing down. Notice that the pin-outs stay the same, and the only difference is in the color coding of the wiring.

     

    Pin assignments for T568A and T568B

    Note: Mixing cables can cause communication problems on the network. Before installing a network or adding a new component to it, make sure the cable being used is in the correct wiring standard.

    Coaxial

    Coaxial cable, or coax, is one of the oldest media used in networks. Coax is built around a center conductor or core that is used to carry data from point to point. The center conductor has an insulator wrapped around it, a shield over the insulator, and a nonconductive sheath around the shielding. This construction allows the conducting core to be relatively free from outside interference. The shielding also prevents the conducting core from emanating signals externally from the cable.

    Note: Before you read any further, accept the fact that the odds are incredibly slim that you will ever need to know about coax for a new installation in the real world (with the possible exception of RG-6, which is used from the wall to cable modem). If you do come across it, it will be in an existing installation and one of the first things you'll recommend is that it be changed. 

    Read more »
  • Compact Optical Splitter Module for PON Architecture FTTH Deployment

     

    Passive Optical Network (PON) system has expanded extensively as an optical network in the construction of Fiber To The Home (FTTH) economically. To allow multiple users to share an optical fiber in a PON, the Optical Splitter that branches an optical signal is indispensable. Recently, plug-and-play structures that make use of modules and connectors are desired to simplify the installation construction of optical splitters. Moreover, because the splitter module is installed in the outside plant, high reliability that can endure harsh environmental conditions is a critical requirement. In addition, compactness and cost savings are also important considerations. Therefore, we have developed it by economically using a superior flame-retardant plasticresin for the module case. We have confirmed that the optical splitter modules have excellent optical characteristics and sufficient reliability.


    1. Introduction of Optical Splitter Modules

    PON system has expanded extensively as an optical network in the construction of FTTH economically. As shown in Fig. 1, PON architecture allows a signal transmitted over a single optical fiber from the telephone exchange office to be shared with multiple users, hence achieving cost reduction per subscriber. Planar Lightwave Circuit (PLC) splitter, an optical splitter is a key to realize the branching of optical signal in the telecommunication network, and currently has a maximum of 32 split ratio capability.

    PON system structure

    Installation of optical splitter is simplified with the application of latch-on or snap method that can expedite the process with quick plug-in action. This plug-and-play method is commonly applied at the interconnection points in the FTTH network (This method enables field installation of optical components without any special tools or skills in managing bare optical fibers). To effectively deploy with such simple techniques and modular designs, connectorized components are essential to be integrated in the structure design of optical splitters. In addition, flexibility of network is achieved with the application of module terminated with connector cord, which allows easy reconfiguration of the network. Furthermore, in the FTTH PON architecture, the function of Fiber Distribution Hub (FDH) is to house optical splitter outdoor, therefore the FDH is critical in ensuring high reliability against environmental factors. Due to the space constraint in the FDH, down-sizing of optical splitter module design is done. The pervasive FTTH deployment worldwide has been called for an imminent need to develop low-cost solutions. The newly developed small sized and lightweight optical splitter is made from retardant plastic resin with sturdiness comparable to the conventional metal packaging in withstanding outdoor environmental conditions, but at a fraction of its original cost. This article illustrates the development of 1×16, 1×32 and 2×32 Wavelength Division Multiplexing (WDM) optical splitter module. The characteristics and reliability evaluation will also be discussed in this article.

    2. Structure of Optical Splitter Modules

    2.1. PLC-Type Splitter

    As shown in Fig. 2, the optical fiber is being branched to 32 outputs through a 1×32 PLC-type optical splitter. PLC chip is a silica glass embedded with optical wave circuit. The circuit pattern is designed to branch a single input into multiple output channels. Optical fiber is adhered to PLC chip with resin curedby ultraviolet exposure; this interface conforms to Telcordia GR-1209 and GR-1221 test conditions, hence good reliability is ensured. Furthermore, inorder to actualize the size reduction, bend insensitive Single Mode Fiber (SMF) has been introduced into this module.

    1x32 PLC Splitter

    2.2. Flame Retardant Plastic Package

    The structure of optical splitter module developed is shown in Fig. 3. Bend insensitive fiber with bending radius of 15 mm is applied to the optical splitter module to achieve a considerable size reduction of the packed module. The overall dimension of L118mm×D87 mm×H13 mm is 3/5 of the size of the conventional optical module utilizing SMF of bending radius 30 mm. In addition, as a flame retardant plastic resin has replaced metallic materialin the splitter packaging, the weight decreases to 1/3 of the conventional metallic packaging version.

    1x32 splitter external structure

    Figure 4 illustrates the internal configuration of the optical splitter module. The splitter module is terminated with optical connector pigtails. The 2 mm fiber cords are fixed onto the cable retainer with adhesive.This structure is designed to withstand tensile strength of maximum 68.6 N. Moreover, as the optical cord has a similar structure to the loose tube cables, allowing the optical fiber free movement within the cord effects the expansion and contraction of the optical cord that will not exert any external tension onto the fiber.

    1x32 splitter internal structure

    The structure of strain relief boot is shown in Fig.5. The boot is designed to control the bending radius to a minimum of optical fiber limit, i.e., 15 mm. This prevents an increase in attenuation brought upon by fiber bend. The flexible boot developed has taken factors like hardness, thickness and the quantity of cord per boot into the design considerations to control the bending radius to a minimum of 15 mm when a loadis applied at 90° bend to the optical cord perpendicularly.

    strain relief boot model

    3. OPTICAL PERFORMANCE AND CHARACTERISTIC

    3.1. Functionality of FDH

    Figure 6 captures the appearance of FDH system in configuration with optical splitter module load. The hub, optical connector, and optical adapters are all mounted onto a panel to enable ease of operation with a latch mechanism. The pigtail is elegantly managed in a U-shape through the mandrel. This plug-and-play method makes installation extremely simple and efficient.

    installed splitter modules in FDH

    3.2. Fundamental Optical Characteristics

    The 1×16 and 1×32 splitter modules were fabricated to be mountable onto the above described fiber distribution hub. The vacant port (a port which is not in service) present in the FDH will result in back reflections of the optical signal. To prevent return loss from the end face of vacant port, SC connector is polished to an Angled Physical Contact (APC) interface. Data below tabulates the optical characteristics of the optical splitter module, inclusive of the connector pigtails.

    The histograms shown in Figs. 7 and 8 illustratethe insertion loss performance of 1×16 and 1×32 optical splitter module respectively. At operating wavelength 1310 nm, the average insertion loss of 1×16 splitter stands at 13.23 dB while that of 1×32 splitter is 16.33 dB. Similarly, at 1550 nm operation wavelength, the insertion loss of 1×16 and 1×32 splitter module is 13.10 dB and 16.22 dB respectively. In addition, the standard deviation of 1×16 splitter is 0.29 dB while 1×32 splitter yields a standard deviation of 0.34dB. At the same time, this value decreases to 0.23 dB for 1×16 splitter and 0.28 dB for the 1×32 splitter at wavelength 1550 nm.

    1x16 splitter insertion loss

    The performances of other optical characteristics apart from insertion loss are shown in Table 1. These results show consistent good performances, as exhibited in the insertion loss histogram, in characteristics including uniformity, return loss and PDL values.

    optical characteristics measurement

    3.3. Temperature dependent loss

    History from past experimental results has shown that components terminated with optical pigtail cord are susceptible to insertion loss fluctuation with temperature change. To isolate the effects of cordage expansion/contraction on the optical fiber within, the optical cord is designed to allow free movement of optical fiber, thus eliminating the external stress fromthe expansion/contraction of the cord. Figure 9 depicts the insertion loss variation of the 1×32 optical splitter module during temperature cycling from −40 °C to +85 °C. The average, minimum, and maximum values obtained from the 32 output ports are illustrated in the graph shown in Fig. 9. From the graph, the maximum loss deviation between the ports with maximum and minimum insertion loss is 0.17 dB. This result has an evident exceptional stability of the optical splitter module that is developed.

    1x32 splitter insertion loss temperature dependence

    3.4. Wavelength dependent loss

    The wavelength dependent loss of the 1×32 optical splitter module is shown in Fig. 10. The performances of insertion losses over wavelengths from 1260 nm to 1680 nm are measured. Again, the average loss from 32 ports and minimum and maximum wavelength dependent losses are illustrated in the graph. The average deviation is 0.36 dB while the maximum deviation from all the 32 ports is 0.86 dB.

    1x32 splitter insertion loss wavelength dependence

    This proves that the splitter module has shown resilience in insertion loss variation over a broad spectrum of wavelength.

    A variety of optical devices are stored in this optical splitter module, making it multifunctional. An example is the 2×32 WDM optical splitter module shown in Fig. 11 and the structure of its cable retainer in Fig.12. A WDM filter was built in front of a 1×32 splitter module, enabling the structure to have multiple wavelengths.

    2x32 WDM splitter configuration

    Figure 13 shows the wavelength dependent loss of the 2×32 WDM optical splitter module. With the WDM filter, the wavelength ranging from 1530nm to1570nm are transmitted from the B port, and the other wavelength ranges are transmitted from the A port. The wavelength dependent loss of A port and B port are split evenly among the 32 fibers, hence excellent loss performance is obtained in each port.

    2x32 WDM splitter insertion loss wavelength dependence

    4. Reliability of Optical Splitter Modules

    The reliability of 1×32 splitter module is evaluated in accordance to test procedures stipulated in the Telcordia GR-1209 and GR-1221. The test conditions and the results of the 1×32 splitter module measured at 1550 nm are shown in Table 2. The average, maximum, and minimum values of 32 output ports measured are recorded in Table 2. The results of side pulltest and cable retention test are maximum in-situ datamonitored during load application onto the cable cord. On the other hand, the recorded data of damp heat, temperature cycling, mechanical shock, vibration, and water immersion shows the variation of insertion loss before and after the test conditions. From the results, it is confirmed about the reliability of 1×32 splitter module.

    1x32 splitter reliability test

    The results of high temperature and humidity test are depicted in Fig. 14. The optical splitter samples underwent a total of 2000 hours of storage at 85 °C and of 85% relative humidity. Insertion loss data at 100 hrs, 168 hrs, 500 hrs, 1000 hrs, and 2000 hrs juncture were measured. The average insertion loss of the 32 ports, maximum and minimum insertion loss measured at 1550 nm are displayed in the graph. From the graph in Fig. 14, it is concluded that there is very minimal loss variation even after 2000 hrs. The optical splitter module has shown good stability when exposed to high temperature and humidity conditions.

    insertion loss variation of loss during damp heat test

    Furthermore, to meet the flame retardant requirements for optical components and accessories, we have applied frame retardant plastic material of 1.5 mm thickness complying to UL-94 V-0. On the same note, the jacket of optical fiber cord is made of grade V-0 flame retardant PVC.

    5. Conclusion

    A compact and economical optical splitter that boasts of superior optical performance and reliability against stringent environmental conditions suited for outdoor installation has been successfully developed. This plug-and-play design for installation of the above optical splitter has enabled simple and speedy installation, at the same time provided added flexibility for future network reconfigurations, thus making this optical splitter module the perfect solution for PON architecture FTTH deployment.

     

    Read more »
RSS